LIMITED DIVERSITY OF ANOPHELES DARLINGI IN THE PERUVIAN AMAZON REGION OF IQUITOS

VIVIANA PINEDO-CANCINO Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by VIVIANA PINEDO-CANCINO in
Current site
Google Scholar
PubMed
Close
,
PATRICIA SHEEN Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by PATRICIA SHEEN in
Current site
Google Scholar
PubMed
Close
,
EDUARDO TARAZONA-SANTOS Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by EDUARDO TARAZONA-SANTOS in
Current site
Google Scholar
PubMed
Close
,
WILLIAM E. OSWALD Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by WILLIAM E. OSWALD in
Current site
Google Scholar
PubMed
Close
,
CESAR JERI Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by CESAR JERI in
Current site
Google Scholar
PubMed
Close
,
AMY YOMIKO VITTOR Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by AMY YOMIKO VITTOR in
Current site
Google Scholar
PubMed
Close
,
JONATHAN A. PATZ Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by JONATHAN A. PATZ in
Current site
Google Scholar
PubMed
Close
, and
ROBERT H. GILMAN Laboratory of Infectious Diseases, Department of Microbiology, Faculty of Sciences, Peruvian University Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA (Projects in Informatics, Health, Medicine and Agriculture), Lima, Peru; Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Stanford University, Stanford, California; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Department of International Health, and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by ROBERT H. GILMAN in
Current site
Google Scholar
PubMed
Close
Restricted access

Anopheles darlingi is the most important malaria vector in the Amazon basin of South America, and is capable of transmitting both Plasmodium falciparum and P. vivax. To understand the genetic structure of this vector in the Amazonian region of Peru, a simple polymerase chain reaction (PCR)–based test to identify this species of mosquito was used. A random amplified polymorphic DNA–PCR was used to study genetic variation at the micro-geographic level in nine geographically separate populations of An. darlingi collected in areas with different degrees of deforestation surrounding the city of Iquitos. Within-population genetic diversity in nine populations, as quantified by the expected heterozygosity (HE), ranged from 0.27 to 0.32. Average genetic distance (FST) among these populations was 0.017. These results show that the nine studied populations are highly homogeneous, suggesting that strategies can be developed to combat this malaria vector as a single epidemiologic unit.

Author Notes

  • 1

    Aramburu Guarda J, Ramal Asayag C, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5 :209–215.

  • 2

    Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Sanchez Lozano W, Pinedo Cancino V, Patz JA, 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74 :3–11.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Lourenço de Oliveira R, Da Gama A, Arle M, Fernández da Silva T, 1989. Anopheline species, some of their habits and relation to malaria in endemic areas of Rondonia state, Amazon region of Brazil. Mem Inst Oswaldo Cruz 84 :501–514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Oliveira FJ, De Oliveira R, Teva A, Deane L, Ribeiro C, 1990. Natural infections of Anophelines in Rondonia State, Brazilian Amazon. Am J Trop Med Hyg 43 :6–10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Gómez-Romero E, Tamariz-Ortiz T, 1998. Uso de la tierra y patrones de deforestación en la zona de Iquitos. Kalliola R, Flores-Paitan S, eds. Geoecologia y Desarrollo Amazónico. Sulkava: Finnreklama Oy.

    • PubMed
    • Export Citation
  • 6

    Harlem G, 2000. Informe Sobre las Enfermedades Infecciosas, Datos Epidemiológicos 1998–1999. Organización Mundial de la Salud. Accessed February 9, 2006. Available from http://www.who.int/infectious-disease-report/idr99-spanish/index.htm.

    • PubMed
    • Export Citation
  • 7

    Sharma V, Malhotra M, Mani T, 1984. Entomological and epidemiological study of malaria in Terai. Facets of Environmental Problems, Five Case Studies. New Delhi: Indian National Science Academy Press, 198.

    • PubMed
    • Export Citation
  • 8

    Kroeger A, Mancheno M, Peese K, 1995. Métodos para Mejorar el Control de la Malaria en Ecuador y Colombia. Quito: Abya Yala Press, 230.

    • PubMed
    • Export Citation
  • 9

    Need J, Rogers E, Phillips I, 1993. Mosquitoes (Diptera: Culicidae) captured in the Iquitos area of Peru. J Med Entomol 30 :634–638.

  • 10

    Marrelli MT, Floeter-Winter LM, Malafronte RS, Tadei WP, Lourenço de Oliveira R, Flores-Mendoza C, Marinotti O, 2005. Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences. Med Vet Entomol 19 :208–218.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Posso C, Gonzalez R, Cardenas H, Gallego G, Duque M, Suarez M, 2003. Random amplified polymorphic DNA analysis of Anopheles nuneztovari (Diptera: Culicidae) from western and northeastern Colombia. Mem Inst Oswaldo Cruz 98 :469–476.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Lounibos L, Wilkerson R, Conn J, Hribar L, Fritz G, Danoff-Burg J, 1998. Morphological, molecular, and chromosomal discrimination of cryptic Anopheles (Nysorhynchus) (Diptera: Culicidae) from South America. J Med Entomol 35 :830–838.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60 :364–376.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Wilkerson RC, Parsons TJ, Klein TA, Gaffigan TV, Bergo E, Consolim J, 1995. Diagnosis by random amplified polymorphic DNA polymerase chain reaction of four cryptic species related to Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) from Paraguay, Argentina, and Brazil. J Med Entomol 32 :697–704.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Sucharit S, Komalamisra N, 1997. Differentiation of Anopheles minimus species complex by RAPD-PCR, technique. J Med Assoc Thai 80 :598–602.

  • 16

    Malafronte RS, Marrelli MT, Marinotti O, 1999. Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae). J Med Entomol 36 :631–634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Molina-Cruz AP, De Merida AM, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, Black WC IV, 2004. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71 :350–359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Conn JE, Rosa-Freitas MG, Luz SL, Momen H, 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosq Control Assoc 15 :468–474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Morlais I, Ponçon N, Simard F, Cohuet A, Fontenille D, 2004. Intraspecific nucleotide variation in Anopheles gambiae: New insights into the biology of malaria vectors. Am J Trop Med Hyg 71 :795–802.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Dos Santos J, Maia J, Tadei W, Rodriguez G, 2003. Izoenzimatic variability among five Anopheles species belonging to the Nysorhynchus and Anopheles subgenera of the Amazon region, Brazil. Mem Inst Oswaldo Cruz 98 :247–253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Scarpassa VM, Tadei WP, Suarez MF, 1999. Population structure and genetic divergence in de Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. Am J Trop Med Hyg 60 :1010–1018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Mutebi JP, Black WC IV, Bosio CF, Sweeney WP, Craig GB, 1997. Linkage map for the Asian tiger mosquito Aedes (Stegomyia) albopictus based on SSCP analysis of RAPD markers. J Hered 88 :489–494.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Linthicum KJ, 1988. A revision of the Argyritarsis section of the subgenus Nyssorynchus of Anopheles (Diptera: Culicidae). Mosq Syst 20 :98–271.

  • 24

    Snounou G, Pinheiro L, Goncalves A, Fonseca L, Dias F, Brown K, Do Rosario V, 1993. The importance of sensitive detection of malaria parasites in the human and insect hosts in epidemiological studies, as shown by the analysis of field samples from Guinea-Bissau. Trans R Soc Trop Med Hyg 87 :649–653.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Maniatis T, Fritsch EF, Sambrook J, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    • PubMed
    • Export Citation
  • 26

    Soto G, Bautista CT, Roth DE, Gilman RH, Velapatino B, Ogura M, Dailide G, Razuri M, Meza R, Katz U, Monath TP, Berg DE, Taylor DN, 2003. Helicobacter pylori reinfection is common in Peruvian adults after antibiotic eradication therapy. J Infect Dis 188 :1263–1275.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Holsinger KE, Lewis PO, Dey DK, 2002. A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11 :1157–1164.

  • 28

    Wright S, 1951. The genetical structure of populations. Ann Eugen 15 :323–354.

  • 29

    Black WC IV, 1995. Statistical analysis of arbitrary primed PCR patterns in molecular taxonomic studies. Clapp JP, eds. Methods in Molecular Biology: Species Diagnostic Protocol PCR and other Nucleic Acid Methods. Totowa, NJ: Humana Press, 39–55.

    • PubMed
    • Export Citation
  • 30

    Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.

    • PubMed
    • Export Citation
  • 31

    Kruskal J, 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29 :28–42.

  • 32

    Mantel NA, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27 :209–220.

  • 33

    Sokal RR, Rohlf FJ, 1995. Biometry. New York: W. H .Freeman and Company Press.

    • PubMed
    • Export Citation
  • 34

    Smouse PE, Long JC, Sokal RR, 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35 :627–632.

  • 35

    Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131 :479–491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Holsinger KE, Wallace LE, 2004. Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol Ecol 13 :887–894.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Hartl DL, Clark AG, 1997. Principles in Population Genetics. Sunderland, MA: Sinauer Associates, Inc.

    • PubMed
    • Export Citation
  • 38

    Garros C, Koekemoer L, Kamau L, Awolola S, Van Bortel W, Coetzee M, Coosemans M, Manguin S, 2004. Restriction fragment length polymorphism method for the identification of major African and Asian malaria vectors within the Anopheles funestus and An. minimus groups. Am J Trop Med Hyg 70 :260–265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Temu EA, Hunt RH, Coetzee M, 2004. Microsatellite DNA polymorphism and heterozygosity in the malaria vector mosquito Anopheles funestus (Diptera: Culicidae) in east and southern Africa. Acta Trop 90 :39–49.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas L, De Lourdes Munoz M, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66 :213–222.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 55 55 4
Full Text Views 238 8 0
PDF Downloads 43 5 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save