• 1

    Anderson R, May R, 1991. Infectious Diseases of Humans. Oxford, UK: Oxford University Press.

  • 2

    Smith DL, Dushoff J, Snow RW, Hay SI, 2005. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438 :492–495.

    • Search Google Scholar
    • Export Citation
  • 3

    Macdonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.

  • 4

    Garrett-Jones C, Shidrawi GR, 1969. Malaria vectorial capacity of a population of Anopheles gambiae. Bull WHO 40 :531–545.

  • 5

    Dye C, 1992. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol 37 :1–19.

  • 6

    Burkot TR, 1988. Non-random host selection by anopheline mosquitoes. Parasit Today 4 :156–162.

  • 7

    Port GR, Boreham PFL, 1980. The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae). Bull Ent Res 70 :133–144.

    • Search Google Scholar
    • Export Citation
  • 8

    Knols BGJ, de Jong R, Takken W, 1995. Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans Roy Soc Med Hyg 89 :604–606.

    • Search Google Scholar
    • Export Citation
  • 9

    Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garrett JP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ, Watts CH, Chandiwana SK, Anderson RM, 1997. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc Natl Acad Sci USA 94 :338–342.

    • Search Google Scholar
    • Export Citation
  • 10

    Ansell J, Hamilton KA, Pinder M, Walraven GEL, Lindsay SW, 2002. Short-range attractiveness of pregnant women to Anopheles gambiae mosquitoes. Trans R Soc Med Hyg 96 :113–116.

    • Search Google Scholar
    • Export Citation
  • 11

    Michael E, Ramaiah KD, Hotl SL, Barker G, Paul MR, Yuvaraj J, Das PK, Grenfell BT, Bundy DAP, 2001. Quantifying mosquito biting patterns on humans by DNA fingerprinting of bloodmeals. Am J Trop Med Hyg 65 :722–728.

    • Search Google Scholar
    • Export Citation
  • 12

    DeBenedictis J, Chow-Schaffer E, Costero A, Clark GG, Edman JD, Scott TW, 2003. Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico using PCR-based DNA profiling. Am J Trop Med Hyg 68 :447–452.

    • Search Google Scholar
    • Export Citation
  • 13

    Soremekun S, Maxwell C, Zuwakuu M, Chen C, Michael E, Curtis C, 2004. Measuring the efficacy of insecticide treated bed nets: The use of DNA fingerprinting to increase the accuracy of personal protection estimates in Tanzania. Trop Med Int Health 9 :664–672.

    • Search Google Scholar
    • Export Citation
  • 14

    Gimnig JE, Kolczak MS, Hightower AW, Vulule JM, Schoute E, Kamau L, Phillips-Howard PA, ter Kuile FO, Nahlen BL, Hawley WA, 2003. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya. Am J Trop Med Hyg 68 (suppl):115–120.

    • Search Google Scholar
    • Export Citation
  • 15

    Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS, Hightower AW, 2003. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68 (suppl):121–127.

    • Search Google Scholar
    • Export Citation
  • 16

    Afrane YA, Lawson BWL, Githeko AK, Yan G, 2005. Effect of micro-climatic changes caused by land cover on the duration of the gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in the western Kenya highlands. J Med Entomol 42 :974–980.

    • Search Google Scholar
    • Export Citation
  • 17

    Gilles MT, 1955. The pre-gravid phase of ovarian development in Anopheles funestus. Ann Trop Med Parasitol 49 :320–325.

  • 18

    Gilles MT, 1954. Recognition of age-groups within populations of Anopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann Trop Med Parasitol 48 :58–74.

    • Search Google Scholar
    • Export Citation
  • 19

    Dye C, Hasibeder G, 1986. Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans Roy Soc Med Hyg 80 :69–77.

    • Search Google Scholar
    • Export Citation
  • 20

    Ndenga B, Githeko AK, Mushinzimana E, Omukunda E, Otsyula G, Minakawa N, Zhou G, Yan G, 2006. Population dynamics of malaria vectors in highlands and lowlands of western Kenya. J Med Entomol 43 :200–206.

    • Search Google Scholar
    • Export Citation
  • 21

    Mukabana WR, Takken W, Seda P, Killeen GF, Hawley WA, Knols BGJ, 2002. Extent of digestion affects the success of amplifying human DNA from blood meals of Anopheles gambiae (Diptera: Culicidae). Bull Ent Res 92 :233–239.

    • Search Google Scholar
    • Export Citation
  • 22

    Gilles MT, DeMeillon KA, 1968. The Anophelinae of Africa South of the Sahara. Johannesburg: The South African Institute for Medical Research.

  • 23

    Chow-Schaffer E, Hawley W, Sina B, DeBenedictis J, Scott TW, 2000. Laboratory and field evaluation of PCR-based forensic DNA profiling for use in the identification of human blood meals in Aedes aegypti (Diptera: Culicidae). J Med Entomol 37 :492–502.

    • Search Google Scholar
    • Export Citation
  • 24

    Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 :520–529.

    • Search Google Scholar
    • Export Citation
  • 25

    Koekemoer LL, Kamau L, Hunt RH, Coetzee M, 2002. Cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 66 :804–811.

    • Search Google Scholar
    • Export Citation
  • 26

    Lindsay S, Ansell J, Selman C, Cox V, Hamilton K, Walraven G, 2000. Effect of pregnancy on exposure to malaria mosquitoes. Lancet 355 :1972.

    • Search Google Scholar
    • Export Citation
  • 27

    Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM, Seroney IK, Ofulla AVO, Atieli FK, Ondijo SO, Genga IO, Odada PK, Situbi PA, Oloo JA, 1996. Some observations on the biting behavior of Anopheles gambiae ss, Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp Parasitol 82 :306–315.

    • Search Google Scholar
    • Export Citation
  • 28

    Lacroix R, Mukabana WR, Gouagna LC, Koella JC, 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLOS Biol 3 :1590–1593.

    • Search Google Scholar
    • Export Citation
  • 29

    Pates H, Curtis C, 2005. Mosquito behavior and vector control. Annu Rev Entomol 50 :53–70.

  • 30

    Koella JC, Sorensen FL, Anderson RA, 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 1398 :763–768.

    • Search Google Scholar
    • Export Citation
  • 31

    Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, Koech DK, 1988. Bloodmeal identification by direct enzyme-linked immunosorbent-assay (ELISA), tested on anophelines (Diptera: Culicidae) in Kenya. J Med Entomol 25 :9–16.

    • Search Google Scholar
    • Export Citation
  • 32

    Mbogo CNM, Kabiru EW, Muiruri SK, Nzovu JM, Ouma JH, Githure JI, Beier JC, 1993. Bloodfeeding behavior of Anopheles gambiae sl and Anopheles funestus in Kilifi district, Kenya. J Am Mosq Control Assoc 9 :225–227.

    • Search Google Scholar
    • Export Citation
  • 33

    ter Kuile FO, Terlouw DJ, Phillips-Howard PA, Hawley WA, Friedman JF, Kolczak MS, Kariuki SK, Shi YP, Kwena AM, Vulule JM, Nahlen BL, 2003. Impact of permethrin-treated bed nets on malaria and all cause mortality in young children in an area of intense perennial malaria transmission in western Kenya: Cross-sectional survey. Am J Trop Med Hyg 68 (suppl):100–107.

    • Search Google Scholar
    • Export Citation
  • 34

    Githeko AK, Service MW, Mbogo CM, Atieli FK, Juma FO, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58 :307–316.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 4 4 4
Full Text Views 300 113 5
PDF Downloads 95 40 7
 
 
 
 
 
 
 
 
 
 
 

DNA PROFILING OF HUMAN BLOOD IN ANOPHELINES FROM LOWLAND AND HIGHLAND SITES IN WESTERN KENYA

THOMAS W. SCOTTDepartment of Entomology, University of California, Davis, California; Kenya Medical Research Institute, Kisumu, Kenya; Department of Entomology, Cornell University, Ithaca, New York; Department of Biological Sciences, State University of New York, Buffalo, New York

Search for other papers by THOMAS W. SCOTT in
Current site
Google Scholar
PubMed
Close
,
ANDREW K. GITHEKODepartment of Entomology, University of California, Davis, California; Kenya Medical Research Institute, Kisumu, Kenya; Department of Entomology, Cornell University, Ithaca, New York; Department of Biological Sciences, State University of New York, Buffalo, New York

Search for other papers by ANDREW K. GITHEKO in
Current site
Google Scholar
PubMed
Close
,
ANDREW FLEISHERDepartment of Entomology, University of California, Davis, California; Kenya Medical Research Institute, Kisumu, Kenya; Department of Entomology, Cornell University, Ithaca, New York; Department of Biological Sciences, State University of New York, Buffalo, New York

Search for other papers by ANDREW FLEISHER in
Current site
Google Scholar
PubMed
Close
,
LAURA C. HARRINGTONDepartment of Entomology, University of California, Davis, California; Kenya Medical Research Institute, Kisumu, Kenya; Department of Entomology, Cornell University, Ithaca, New York; Department of Biological Sciences, State University of New York, Buffalo, New York

Search for other papers by LAURA C. HARRINGTON in
Current site
Google Scholar
PubMed
Close
, and
GUIYUN YANDepartment of Entomology, University of California, Davis, California; Kenya Medical Research Institute, Kisumu, Kenya; Department of Entomology, Cornell University, Ithaca, New York; Department of Biological Sciences, State University of New York, Buffalo, New York

Search for other papers by GUIYUN YAN in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

We used polymerase chain reaction (PCR)-based DNA profiling to determine the person from whom Anopheles funestus and An. gambiae collected in natural human habitations obtained their blood meals. Less than 20% of human hosts contributed to > 50% of all blood meals, and 42% were not bitten at all, including people in the age group bitten most often. As expected, bites were unevenly distributed by age (young adults > older adults > children). Use of untreated bed nets by adults, but not children, seemed to redirect bites to children. Multiple blood meals in a single gonotrophic cycle occurred frequently enough to be epidemiologically important (14% for An. funestus and 11% for An. gambiae). Mosquitoes that did not bite a person who slept in the collection house can affect estimation of entomological risk. Mosquito–human interactions did not differ across ecologically and epidemiologically distinct highland and lowland sites.

Author Notes

Reprint requests: Thomas W. Scott, Department of Entomology, University of California, Davis, CA 95616. E-mail: twscott@ucdavis.edu.
Save