• 1

    Kosoy MY, Slonova RA, Mills JN, Mandel E, Childs JE, 1997. Community structure and prevalence of hantavirus infection in rodents: A geographic division of the enzootic area in far eastern Russia. J Vector Ecol 22 :52–63.

    • Search Google Scholar
    • Export Citation
  • 2

    Williams RJ, Bryan RT, Mills JN, Palma RE, Vera I, De Velasquez F, Baez E, Schmidt WE, Figueroa RE, Peters CJ, Zaki SR, Khan AS, Ksiazek TG, 1997. An outbreak of hantavirus pulmonary syndrome in western Paraguay. Am J Trop Med Hyg 57 :274–282.

    • Search Google Scholar
    • Export Citation
  • 3

    Calderon G, Pini N, Bolpe J, Levis S, Mills JN, Segura E, Guthmann N, Cantoni G, Becker J, Fonollat A, Ripoll C, Bortman M, Benedetti R, Sabattini M, Enria D, 1999. Hantavirus reservoir hosts associated with peridomestic habitats in Argentina. Emerg Infect Dis 5 :792–797.

    • Search Google Scholar
    • Export Citation
  • 4

    Ruedas LA, Salazar–Bravo J, Tinnin DS, Armién B, Cáceres L, García A, Ávila Díaz M, Gracia F, Suzán G, Peters CJ, Yates TL, Mills JN, 2004. Community ecology of small mammal populations in Panama following an outbreak of Hantavirus pulmonary syndrome. J Vector Ecol 29 :177–191.

    • Search Google Scholar
    • Export Citation
  • 5

    Boone JD, McGwire KC, Otteson EW, DeBaca RS, Kuhn EA, Villard P, Brussard PF, Jeor SCST, 2000. Remote Sensing and Geographic Information Systems: Charting Sin Nombre Virus Infections in Deer Mice. Emerg Infect Dis 6 :248–258.

    • Search Google Scholar
    • Export Citation
  • 6

    Peterson AT, Sanchez-Cordero V, Ben Beard C, Ramsey JM, 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 8 :662–667.

    • Search Google Scholar
    • Export Citation
  • 7

    Booman M, Durrheim DN, La Grange K, Martin C, Mabuza AM, Zitha A, Mbokazi FM, Fraser C, Sharp BL, 2000. Using a geographical information system to plan a malaria control programme in South Africa. Bull World Health Organ 78 :1438–1444.

    • Search Google Scholar
    • Export Citation
  • 8

    Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, Hunt DK, Enscore RE, Gage KL, Irland C, Peters CJ, Bryan R, 2000. Using Remotely Sensed Data To Identify Areas at Risk For Hantavirus Pulmonary Syndrome. Emerg Infect Dis 6 :238–248.

    • Search Google Scholar
    • Export Citation
  • 9

    Stockwell DRB, Peters D, 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geograph Inform Sci 13 :143–158.

    • Search Google Scholar
    • Export Citation
  • 10

    Guisan A, Zimmermann NE, 2000. Predictive habitat distribution models in ecology. Ecol Model 135 :147–186.

  • 11

    Segurado P, Araujo MB, 2004. An evaluation of methods for modeling species distributions. J Biogeograph 31 :1555–1568.

  • 12

    Utrera A, Duno G, Ellis BA, Salas RA, de Manzione N, Fulhorst CF, Tesh RB, Mills JN, 2000. Small mammals in agricultural areas of the western llanos of Venezuela: community structure, habitat associations, and relative densities. J Mammal 8 :536–548.

    • Search Google Scholar
    • Export Citation
  • 13

    Diffendorfer JE, Gaines MS, Holt RD, 1995. Habitat fragmentation and movements of 3 small mammals (sigmodon, microtus, and peromyscus). Ecology. 76 :827–839.

    • Search Google Scholar
    • Export Citation
  • 14

    Yahnke CJ, Meserve PL, Ksiazek TG, Mills JN, 2001. Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. Am J Trop Med Hyg 65 :768–776.

    • Search Google Scholar
    • Export Citation
  • 15

    Daily GC, Ceballos G, Pacheco J, Suzán G, Sánchez-Azofeifa A, 2003. Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17 :1814–1826.

    • Search Google Scholar
    • Export Citation
  • 16

    Vincent MJ, Quiroz E, Gracia F, Sanchez AJ, Ksiazek TG, Kitsutani PT, Ruedas LA, Tinnin DS, Caceres L, Garcia A, 2000. Hantavirus pulmonary syndrome in Panama: Identification of novel Hantaviruses and their likely reservoirs. Virology 277 :14–19.

    • Search Google Scholar
    • Export Citation
  • 17

    Armién B, Pascale JM, Bayard V, Muñoz C, Mosca I, Guerrero G, Armién A, Quiroz E, Castillo Z, Zaldivar Y, Gracia F, Hjelle B, Koster F, 2004. High seroprevalence of hantavirus infection on the Azuero peninsula of Panama. Am J Trop Med Hyg 70 :682–687.

    • Search Google Scholar
    • Export Citation
  • 18

    Salazar-Bravo J, Armién B, Suzán G, Armién A, Ruedas L, Ávila M, Zaldivar Y, Pascale J, Gracia F, Yates TL, 2004. Serosurvey of wild rodents for Hantaviruses in Panama, 2000–2002. J Wildl Dis 40 :103–109.

    • Search Google Scholar
    • Export Citation
  • 19

    Tosi J, 1971. Zonas de Vida: Una Base Ecológica Para Investigaciones Silvícolas e Inventariación Forestal en la Republica de Panamá. Rome, Italy: United Nations Development Programme.

  • 20

    Comisión Nacional de Recursos Fitogenéticos de Panamá, 1996. Panama: Informe Nacional Para la Conferencia Tecnica Internacional de la FAO Sobre los Recursos Fitogeneticos. Leipzig, Germany: Food and Agriculture Organization of the United Nations.

  • 21

    Rempel RS, Carr AP, 2003. Patch Analyst extension for Arc-View: version 3. Available at http://flash.lakeheadu.ca/~rrempel/patch/index.html. Accessed September 5, 2004.

  • 22

    Gotelli NJ, Ellison AM, 2004. A Primer of Ecological Statistics. Sunderland, MA: Sinauer Associates.

  • 23

    SAS Institute, 2002. Statistical Discovery Software JMP Version 5.1. SAS Institute, Cary, NC.

  • 24

    Stevens SM, Husband TP, 1998. The influence of edge on small mammals: evidence from Brazilian Atlantic forest fragments. Biol Conserv 85 :1–8.

    • Search Google Scholar
    • Export Citation
  • 25

    Giuggioli L, Abramson A, Kenkre VM, Suzán G, Marcé E, Yates TL, 2005. Diffusion and home range parameters from rodent population measurements in Panama. Bull Math Biol 67 :1135–1149.

    • Search Google Scholar
    • Export Citation
  • 26

    Andren H, 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71 :355–366.

    • Search Google Scholar
    • Export Citation
  • 27

    Suzán G, Ceballos G, 2005. The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico city limits. J Zoo Wildl Med. 36 :479–484.

    • Search Google Scholar
    • Export Citation
  • 28

    Orrock JL, Pagels JF, McShea WJ, Harper EK, 2000. Predicting presence and abundance of a small mammal species: The effect of scale and resolution. Ecol Appl 10 :1356–1366.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 

 

 

 

 

MODELING HANTAVIRUS RESERVOIR SPECIES DOMINANCE IN HIGH SEROPREVALENCE AREAS ON THE AZUERO PENINSULA OF PANAMA

View More View Less
  • 1 Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, New Mexico; Escuela de Biología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México; Instituto Conmemorativo GORGAS, Ciudad de Panamá, Panamá

Habitat fragmentation commonly influences distribution of zoonotic disease reservoirs. In Panama, populations of rodent hosts of hantaviruses are favored by small habitat fragments isolated by agricultural lands. We expected a similar relationship between landscape characteristics and host distribution at fine geographical scales in southern Panama. The relative abundance of Zygodontomys brevicauda, the primary host for “Calabazo” virus, and other rodents was assessed at 24 sites within the Azuero Peninsula. We used satellite imagery to produce several spatial variables that described landscape; however, only slope was consistently related to abundances of the two most dominant rodent species. Using regression, we constructed a spatial model of areas of Z. brevicauda dominance, which in turn relates to higher infection rates. The model predicts highest abundances of Z. brevicauda in flat areas, where humans also dominate. These predictions have important ecological and conservation implications that associate diversity loss, topography, and human land use.

Save