POPULATION STRUCTURE OF THE MALARIA VECTOR ANOPHELES DARLINGI IN A MALARIA-ENDEMIC REGION OF EASTERN AMAZONIAN BRAZIL

JAN E. CONN Department of Biology, University of Vermont, Burlington, Vermont; Wadsworth Center, New York State Department of Health, Albany, New York; Center for Bioinformatics, University of Copenhagen, Copenhagen, Denmark; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; Walter Reed Army Institute for Research, Museum Support Center, Smithsonian Institution, Suitland, Maryland; Instituto Evandro Chagas, Ananindeua, Para, Brazil

Search for other papers by JAN E. CONN in
Current site
Google Scholar
PubMed
Close
,
JOSEPH H. VINEIS Department of Biology, University of Vermont, Burlington, Vermont; Wadsworth Center, New York State Department of Health, Albany, New York; Center for Bioinformatics, University of Copenhagen, Copenhagen, Denmark; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; Walter Reed Army Institute for Research, Museum Support Center, Smithsonian Institution, Suitland, Maryland; Instituto Evandro Chagas, Ananindeua, Para, Brazil

Search for other papers by JOSEPH H. VINEIS in
Current site
Google Scholar
PubMed
Close
,
JONATHAN P. BOLLBACK Department of Biology, University of Vermont, Burlington, Vermont; Wadsworth Center, New York State Department of Health, Albany, New York; Center for Bioinformatics, University of Copenhagen, Copenhagen, Denmark; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; Walter Reed Army Institute for Research, Museum Support Center, Smithsonian Institution, Suitland, Maryland; Instituto Evandro Chagas, Ananindeua, Para, Brazil

Search for other papers by JONATHAN P. BOLLBACK in
Current site
Google Scholar
PubMed
Close
,
DAVID Y. ONYABE Department of Biology, University of Vermont, Burlington, Vermont; Wadsworth Center, New York State Department of Health, Albany, New York; Center for Bioinformatics, University of Copenhagen, Copenhagen, Denmark; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; Walter Reed Army Institute for Research, Museum Support Center, Smithsonian Institution, Suitland, Maryland; Instituto Evandro Chagas, Ananindeua, Para, Brazil

Search for other papers by DAVID Y. ONYABE in
Current site
Google Scholar
PubMed
Close
,
RICHARD C. WILKERSON Department of Biology, University of Vermont, Burlington, Vermont; Wadsworth Center, New York State Department of Health, Albany, New York; Center for Bioinformatics, University of Copenhagen, Copenhagen, Denmark; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; Walter Reed Army Institute for Research, Museum Support Center, Smithsonian Institution, Suitland, Maryland; Instituto Evandro Chagas, Ananindeua, Para, Brazil

Search for other papers by RICHARD C. WILKERSON in
Current site
Google Scholar
PubMed
Close
, and
MARINETE M. PÓVOA Department of Biology, University of Vermont, Burlington, Vermont; Wadsworth Center, New York State Department of Health, Albany, New York; Center for Bioinformatics, University of Copenhagen, Copenhagen, Denmark; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; Walter Reed Army Institute for Research, Museum Support Center, Smithsonian Institution, Suitland, Maryland; Instituto Evandro Chagas, Ananindeua, Para, Brazil

Search for other papers by MARINETE M. PÓVOA in
Current site
Google Scholar
PubMed
Close
Restricted access

Anopheles darlingi is the primary malaria vector in Latin America, and is especially important in Amazonian Brazil. Historically, control efforts have been focused on indoor house spraying using a variety of insecticides, but since the mid-1990s there has been a shift to patient treatment and focal insecticide fogging. Anopheles darlingi was believed to have been significantly reduced in a gold-mining community, Peixoto de Azevedo (in Mato Grosso State), in the early 1990s by insecticide use during a severe malaria epidemic. In contrast, although An. darlingi was eradicated from some districts of the city of Belem (the capital of Para State) in 1968 to reduce malaria, populations around the water protection area in the eastern district were treated only briefly. To investigate the population structure of An. darlingi including evidence for a population bottleneck in Peixoto, we analyzed eight microsatellite loci of 256 individuals from seven locations in Brazil: three in Amapa State, three in Para State, and one in Mato Grosso State. Allelic diversity and mean expected heterozygosity were high for all populations (mean number alleles/locus and HE were 13.5 and 0.834, respectively) and did not differ significantly between locations. Significant heterozygote deficits were associated with linkage disequilibrium, most likely due to either the Wahlund effect or selection. We found no evidence for a population bottleneck in Peixoto, possibly because the reduction was not extreme enough to be detected. Overall estimates of long-term Ne varied from 92.4 individuals under the linkage disequilibrium model to ∞ under the heterozygote excess model. Fixation indices and analysis of molecular variance demonstrated significant differentiation between locations north and south of the Amazon River, suggesting a degree of genetic isolation between them, attributed to isolation by distance.

Author Notes

  • 1

    Lourenço-de-Oliveira R, Guimarães AE, Arle M, da Silva TF, Castro MG, Motta MA, Deane LM, 1989. Anopheline species, some of their habits and relation to malaria in endemic areas of Rondonia State, Amazon region of Brazil. Mem Inst Oswaldo Cruz 84 :501–514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Charlwood JD, 1996. Biological variation in Anopheles darlingi Root. Mem Inst Oswaldo Cruz 91 :391–398.

  • 3

    Lounibos L, Conn JE, 2000. Malaria vector heterogeniety in South America. Am Entomol 46 :238–249.

  • 4

    Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94 :133–147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Wright S, 1951. The genetical structure of populations. Ann Eugenics 15 :323–354.

  • 6

    Endler JA, 1977. Geographic variation, speciation, and clines. Monogr Popul Biol 10 :1–246.

  • 7

    Donnelly MJ, Simard F, Lehmann T, 2002. Evolutionary studies of malaria vectors. Trends Parasitol 18 :75–80.

  • 8

    Cohuet A, Dia I, Simard F, Raymond M, Fontenille D, 2004. Population structure of the malaria vector Anopheles funestus in Senegal based on microsatellite and cytogenetic data. Insect Mol Biol 13 :251–258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Molina-Cruz A, de Merida AM, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, Black WC IV, 2004. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71 :350–359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Conn JE, Rosa-Freitas MG, Luz SL, Momen H, 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosq Control Assoc 15 :468–474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Malafronte RS, Marrelli MT, Marinotti O, 1999. Analysis of ITS2 DNA sequences from Brazilian Anopheles darlingi (Diptera: Culicidae). J Med Entomol 36 :631–634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Mirabello L, Conn J, 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96 :311–321.

  • 13

    Akhavan D, Musgrove P, Abrantes A, d’Gusmao R, 1999. Cost-effective malaria control in Brazil. Cost-effectiveness of a malaria control program in the Amazon Basin of Brazil, 1988– 1996. Soc Sci Med 49 :1385–1399.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Forattini O, 1962. Entomologica Medica. Volume 1. São Paulo, Brazil: Faculdade de Higiene e Saúde Publica, Universidad de São Paulo.

    • PubMed
    • Export Citation
  • 15

    Zimmerman RH, Voorham J, 1997. Use of insecticide-impregnated mosquito nets and other impregnated materials for malaria control in the Americas. Rev Panam Salud Publica 2 :18–25.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Gil LH, Alves FP, Zieler H, Salcedo JM, Durlacher RR, Cunha RP, Tada MS, Camargo LM, Camargo EP, Pereira-da-Silva LH, 2003. Seasonal malaria transmission and variation of anopheline density in two distinct endemic areas in Brazilian Amazonia. J Med Entomol 40 :636–641.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Charlwood JD, Alecrim WD, Fe N, Mangabeira J, Martins VJ, 1995. A field trial with Lambda-cyhalothrin (ICON) for the intradomiciliary control of malaria transmitted by Anopheles darlingi root in Rondônia, Brazil. Acta Trop 60 :3–13.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Duarte EC, Gyorkos TW, Pang L, Abrahamowicz M, 2004. Epidemiology of malaria in a hypoendemic Brazilian Amazon migrant population: a cohort study. Am J Trop Med Hyg 70 :229–237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Póvoa MM, Conn JE, Schlichting CD, Amaral JC, Segura MN, Da Silva AN, Dos Santos CC, Lacerda RN, De Souza RT, Galiza D, Santa Rosa EP, Wirtz RA, 2003. Malaria vectors, epidemiology, and the re-emergence of Anopheles darlingi in Belém, Pará, Brazil. J Med Entomol 40 :379–386.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Duarte EC, Fontes CJ, 2002. Association between reported annual gold mining extraction and incidence of malaria in Mato Grosso-Brazil, 1985–1996. Rev Soc Bras Med Trop 35 :665–668.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Alecrim W, 1992. Malaria, prospecting activities and government policies in the Amazon region. Rev Inst Med Trop São Paulo 34 (Suppl 9):S48.

  • 22

    de Andrade AL, Martelli CM, Oliveira RM, Arias JR, Zicker F, Pang L, 1995. High prevalence of asymptomatic malaria in gold mining areas in Brazil. Clin Infect Dis 20 :475.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Conn JE, Bollback J, Onyabe D, Robinson T, Wilkerson R, Póvoa M, 2001. Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi. Mol Ecol Notes 1 :223–225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Marques AC, Gutierrez HC, 1994. Combate a malária no Brasil: evolução, situação atual e perspectivas. Rev Soc Bras Med Trop 27 (Suppl. 1):91–108.

  • 25

    Deane L, Causey O, Deane M, 1946. An illustrated key by adult female characteristics for identification of thirty-five species of Anophelines from the northeast and Amazon regions of Brazil. Am J Trop Med 18 :1–18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Rubio-Palis Y, Zimmerman RH, 1997. Ecoregional classification of malaria vectors in the neotropics. J Med Entomol 34 :499–510.

  • 27

    Conn JE, Wilkerson RC, Segura MN, de Souza RT, Schlichting CD, Wirtz RA, Póvoa MM, 2002. Emergence of a new neo-tropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg 66 :18–22.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Lewis P, Zaykin D, 2001. Genetic Data Analysis: Computer Program for the Analysis of Allelic Data. Sunderland MA: Sinauer Associates.

    • PubMed
    • Export Citation
  • 29

    Weir B, Cockerham C, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 :1358–1370.

  • 30

    Guo SW, Thompson EA, 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48 :361–372.

  • 31

    Raymound M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 :248–249.

  • 32

    Schneider S, Roessli D, Excoffier L, 2000. Arlequin: A Software for Population Genetic Data. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva.

    • PubMed
    • Export Citation
  • 33

    Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 :457–462.

  • 34

    Goudet J, 2001. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3). Available from http://www.unil.ch/zea/softwares/fstat.html.

    • PubMed
    • Export Citation
  • 35

    Goodman S, 1997. Rst Calc: a collection of computer programs for calculating estimates of genetic differentitation from microsatellite data and determining their significance. Mol Ecol 6 :881–885.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Gaggiotti OE, Lange O, Rassmann K, Gliddon C, 1999. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8 :1513–1520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Nybom H, Esselink GD, Werlemark G, Vosman B, 2004. Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. Sect. Caninae DC. Heredity 92 :139–150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Rousset F, 1977. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145 :1219–1228.

  • 39

    Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27 :209–220.

  • 40

    Raybould A, Mogg F, Aldam C, Glidden CJ, Thorpe J, Clarke RT, 1998. The genetic structure of sea beet (Beta vulgaris ssp. maritima) populations. III. Detection of isolation by distance at microsatellite loci. Heredity 87 :127–132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Cornuet JM, Luikart G, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144 :2001–2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Peel D, Ovenden J, Peel S, 2004. NeEstimator: Software for Estimating Effective Population Size. Brisbane, Queensland, Australia: Queensland Government, Department of Primary Industries and Fisheries.

    • PubMed
    • Export Citation
  • 43

    Lehmann T, Hawley WA, Grebert H, Collins FH, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15 :264–276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Holm S, 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6 :65–70.

  • 45

    Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR, 1993. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet 52 :922–927.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    McCartney M, Brayer K, Levitan D, 2004. Polymorphic microsatellite loci from the red sea urchin, Strongylocentrotus franciscanus, with comments on heterozygote deficit. Mol Ecol Notes 4 :226–228.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Pinto J, Donnelly MJ, Sousa CA, Malta-Vacas J, Gil V, Ferreira C, Petrarca V, do Rosario VE, Charlwood JD, 2003. An island within an island: genetic differentiation of Anopheles gambiae in Sao Tome, west Africa, and its relevance to malaria vector control. Heredity 91 :407–414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Luikart G, Allendorf FW, Cornuet JM, Sherwin WB, 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89 :238–247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Rosa-Freitas MG, Broomfield G, Priestman A, Milligan PJ, Momen H, Molyneux DH, 1992. Cuticular hydrocarbons, isoenzymes and behavior of three populations of Anopheles darlingi from Brazil. J Am Mosq Control Assoc 8 :357–366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60 :364–376.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    dos Santos JM, Maia J de F, Tadei WP, Rodriguez GA, 2003. Isoenzymatic variability among five Anopheles species belonging to the Nyssorhynchus and Anopheles subgenera of the Amazon region, Brazil. Mem Inst Oswaldo Cruz 98 :247–253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Walton C, Handley JM, Collins FH, Baimai V, Harbach RE, Deesin V, Butlin RK, 2001. Genetic population structure and introgression in Anopheles dirus mosquitoes in South-east Asia. Mol Ecol 10 :569–580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Onyabe DY, Conn JE, 2001. Genetic differentiation of the malaria vector Anopheles gambiae across Nigeria suggests that selection limits gene flow. Heredity 87 :647–658.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Temu EA, Hunt RH, Coetzee M, 2004. Microsatellite DNA polymorphism and heterozygosity in the malaria vector mosquito Anopheles funestus (Diptera: Culicidae) in east and southern Africa. Acta Trop 90 :39–49.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Lounibos LP, Nishimura N, Conn J, Lourenco-de-Oliveira R, 1995. Life history correlates of adult size in the malaria vector Anopheles darlingi. Mem Inst Oswaldo Cruz 90 :769–774.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Clements A, 1992. The Biology of Mosquitoes. Volume 1. Development, Nutrition and Reproduction. London: Chapman and Hall.

    • PubMed
    • Export Citation
  • 57

    Lounibos LP, Lima DC, Lourenço-de-Oliveira R, Escher RL, Nishimura N, 1998. Egg maturation in neotropical malaria vectors: one blood meal is usually enough. J Vector Ecol 23 :195–201.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Charlwood JD, Alecrim WA, 1989. Capture-recapture studies with the South American malaria vector Anopheles darlingi, Root. Ann Trop Med Parasitol 83 :569–576.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Kreutzer R, Kitzmiller J, Ferreira E, 1972. Inversion polymorphism in the salivary gland chromosomes of Anopheles darlingi Root. Mosq News 32 :555–565.

  • 60

    Tadei W, Santos JD, Rabbani M, 1982. Biologia de anofelinos amazonicos. V. Polimorfismo cromossomico de Anopheles darlingi Root (Diptera: Culicidae). Acta Amazon 12 :353–369.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    Tadei W, Santos JD, 1982. Biologia de anofelinos amazonicos. VII. Estudo da variação de frequencias das inversões cromossomicas de Anopheles darlingi Root (Diptera: Culicidae). Acta Amazon 12 :759–785.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Astanei I, Gosling E, Wilson J, Powell E, 2005. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol 14 :1655–1666.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Carnahan J, Zheng L, Taylor CE, Toure YT, Norris DE, Dolo G, Diuk-Wasser M, Lanzaro GC, 2002. Genetic differentiation of Anopheles gambiae s.s. populations in Mali, West Africa, using microsatellite loci. J Hered 93 :249–253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Wright S, 1978. Evolution and Genetics of Populations. Volume V. Variability among and within Populations. Chicago: University of Chicago Press.

    • PubMed
    • Export Citation
  • 65

    Mukabayire O, Boccolini D, Lochouarn L, Fontenille D, Besansky NJ, 1999. Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Mol Ecol 8 :289–297.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    Braginets OP, Minakawa N, Mbogo CM, Yan G, 2003. Population genetic structure of the African malaria mosquito Anopheles funestus in Kenya. Am J Trop Med Hyg 69 :303–308.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    Walton C, Handley JM, Tun-Lin W, Collins FH, Harbach RE, Baimai V, Butlin RK, 2000. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 17 :962–974.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68

    Deane L, 1947. Observaçoes sobre a malaria na Amazonia brasileira. Rev Soc Brasil Med Trop 24 :13–20.

  • 69

    Shaw PW, Turan C, Wright JM, O’Connell M, Carvalho GR, 1999. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83 :490–499.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70

    Estoup A, Angers B, 1998. Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. Carvalho G, ed. Advances in Molecular Ecology. Amsterdam: IOS Press, 55–86.

    • PubMed
    • Export Citation
  • 71

    Pinto J, Donnelly MJ, Sousa CA, Gil V, Ferreira C, Elissa N, do Rosario VE, Charlwood JD, 2002. Genetic structure of Anopheles gambiae (Diptera: Culicidae) in São Tome and Principe (West Africa): implications for malaria control. Mol Ecol 11 :2183–2187.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72

    Voorham J, 2002. Intra-population plasticity of Anopheles darlingi’s (Diptera, Culicidae) biting activity patterns in the state of Amapá, Brazil. Rev Saude Publica 36 :75–80.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    Loiola CC, da Silva CJ, Tauil PL, 2002. Malaria control in Brazil: 1965 to 2003. Rev Panam Salud Publica 11 :235–244.

  • 74

    Hufbauer RA, Bogdanowicz SM, Harrison RG, 2004. The population genetics of a biological control introduction: mitochondrial DNA and microsatellie variation in native and introduced populations of Aphidus ervi, a parasitoid wasp. Mol Ecol 13 :337–348.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75

    Donnelly MJ, Licht MC, Lehmann T, 2001. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol Biol Evol 18 :1353–1364.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76

    Lehr M, 2003. Phylogenetics and Phylogeography of an Anopheline Cryptic Species Complex. Burlington, VT: University of Vermont.

    • PubMed
    • Export Citation
  • 77

    Deane LM, 1988. Malaria studies and control in Brazil. Am J Trop Med Hyg 38 :223–230.

  • 78

    Machado RL, Povoa MM, Calvosa VS, Ferreira MU, Rossit AR, dos Santos EJ, Conway DJ, 2004. Genetic structure of Plasmodium falciparum populations in the Brazilian Amazon region. J Infect Dis 190 :1547–1555.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    Anderson TJ, Su XZ, Roddam A, Day KP, 2000. Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum. Mol Ecol 9 :1599– 1608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80

    Couto AA, Calvosa VS, Santos MA, de Souza JM, 1995. The evolution over time of the in-vitro resistance of Plasmodium falciparum to antimalarial drugs in 2 areas of the Brazilian Amazonia with distinct socioeconomic and geographic characteristics. Rev Soc Bras Med Trop 28 :357–365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81

    Cortese JF, Caraballo A, Contreras CE, Plowe CV, 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186 :999–1006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82

    Calvosa VS, Adagu IS, Povoa MM, 2001. Plasmodium falciparum: emerging mefloquine resistance in vitro in Pará State, north Brazil. Trans R Soc Trop Med Hyg 95 :330–331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83

    Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 :214–217.

Past two years Past Year Past 30 Days
Abstract Views 351 316 16
Full Text Views 147 3 0
PDF Downloads 38 3 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save