GENETIC DIFFERENTIATION BETWEEN THE BAMAKO AND SAVANNA CHROMOSOMAL FORMS OF ANOPHELES GAMBIAE AS INDICATED BY AMPLIFIED FRAGMENT LENGTH POLYMORPHISM ANALYSIS

MICHEL A. SLOTMAN Department of Ecology and Evolutionary Biology, and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut; Sezione di Parassitologia, Dipartimento di Scienze di Sanità Pubblica, Università di Roma La Sapienza, Rome, Italy; Malaria Research Training Center, Départment d’Entomologie, Ecole Nationale de Médecine et de Pharmacie, Bamako, Mali; World Health Organization, Geneva, Switzerland

Search for other papers by MICHEL A. SLOTMAN in
Current site
Google Scholar
PubMed
Close
,
MONIQUE M. MENDEZ Department of Ecology and Evolutionary Biology, and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut; Sezione di Parassitologia, Dipartimento di Scienze di Sanità Pubblica, Università di Roma La Sapienza, Rome, Italy; Malaria Research Training Center, Départment d’Entomologie, Ecole Nationale de Médecine et de Pharmacie, Bamako, Mali; World Health Organization, Geneva, Switzerland

Search for other papers by MONIQUE M. MENDEZ in
Current site
Google Scholar
PubMed
Close
,
ALESSANDRA DELLA TORRE Department of Ecology and Evolutionary Biology, and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut; Sezione di Parassitologia, Dipartimento di Scienze di Sanità Pubblica, Università di Roma La Sapienza, Rome, Italy; Malaria Research Training Center, Départment d’Entomologie, Ecole Nationale de Médecine et de Pharmacie, Bamako, Mali; World Health Organization, Geneva, Switzerland

Search for other papers by ALESSANDRA DELLA TORRE in
Current site
Google Scholar
PubMed
Close
,
GUIMOGO DOLO Department of Ecology and Evolutionary Biology, and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut; Sezione di Parassitologia, Dipartimento di Scienze di Sanità Pubblica, Università di Roma La Sapienza, Rome, Italy; Malaria Research Training Center, Départment d’Entomologie, Ecole Nationale de Médecine et de Pharmacie, Bamako, Mali; World Health Organization, Geneva, Switzerland

Search for other papers by GUIMOGO DOLO in
Current site
Google Scholar
PubMed
Close
,
YEYA T. TOURÉ Department of Ecology and Evolutionary Biology, and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut; Sezione di Parassitologia, Dipartimento di Scienze di Sanità Pubblica, Università di Roma La Sapienza, Rome, Italy; Malaria Research Training Center, Départment d’Entomologie, Ecole Nationale de Médecine et de Pharmacie, Bamako, Mali; World Health Organization, Geneva, Switzerland

Search for other papers by YEYA T. TOURÉ in
Current site
Google Scholar
PubMed
Close
, and
ADALGISA CACCONE Department of Ecology and Evolutionary Biology, and Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut; Sezione di Parassitologia, Dipartimento di Scienze di Sanità Pubblica, Università di Roma La Sapienza, Rome, Italy; Malaria Research Training Center, Départment d’Entomologie, Ecole Nationale de Médecine et de Pharmacie, Bamako, Mali; World Health Organization, Geneva, Switzerland

Search for other papers by ADALGISA CACCONE in
Current site
Google Scholar
PubMed
Close
Restricted access

The main vector of malaria in sub-Saharan Africa, Anopheles gambiae, is subdivided into five chromosomal forms. Three of them (i.e., BAMAKO, SAVANNA, and MOPTI) are found in sympatry in Mali, where MOPTI can be distinguished from the other two forms based on differences in the ribosomal DNA locus. However, no molecular markers are available to distinguish BAMAKO from SAVANNA. We examined the banding patterns of 139 amplified fragment length polymorphism primer combinations in an attempt to identify diagnostic differences between SAVANNA and BAMAKO. Despite screening > 10,000 bands, no diagnostic differences were found. However, additional AFLP analyses indicated that BAMAKO is genetically differentiated from SAVANNA, with a significant Φst value of 0.072. This could indicate that gene flow between these forms is restricted in at least some portion of the genome and the lack of identifiable fixed differences between the two forms is probably due to their recent origin.

Author Notes

  • 1

    Coluzzi M, Petrarca V, Di Deco MA, 1985. Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Boll Zool 52 :45–63.

  • 2

    Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298 :1415–1418.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Favia G, della Torre A, Bagayoko M, Lanfrancotti A, Sagnon N’F, Touré YT, Coluzzi M, 1997. Molecular identifications of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol 6 :377–383.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M, 2001. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 10 :9–18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Gentile G, Slotman M, Ketmaier V, Powell JR, Caccone A, 2001. Attempts to molecularly distinguish cryptic taxa in Anopheles gambiae s.s., and the problem of taxonomic status. Insect Mol Biol 10 :25–32.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, Edillo FE, Lanzaro GC, 2001. Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics 157 :743–750.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Tripet F, Toure YT, Taylor CE, Norris DE, Dolo G, Lanzaro GC, 2001. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol Ecol 10 :1725–1732.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    della Torre A, Tu Z, Petrarca V, 2005. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol 35 :755–769.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Wang RL, Zheng L, Touré Y, Dandekar T, Kafatos F, 2001. When genetic distance matters: measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient species. Proc Natl Acad Sci USA 98 :10769–10774.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Lehmann T, Licht M, Elissa N, Maega BTA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94 :133–147.

  • 11

    Stump AD, Shoener JA, Constantini C, Sagnon NF, Besansky NJ, 2005. Sex-linked differentiation between incipient species of Anopheles gambiae. Genetics 169 :1509–1519.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Lanzaro GC, Touré YT, Carnahan J, Zheng L, Dolo G, Traoré SF, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in West Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci USA 95 :14260–14265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Tripet F, Dolo G, Lanzaro GC, 2005. Multilevel analyses of genetic differentiation in Anopheles gambiae s.s. reveal patterns of gene flow important for malaria-fighting mosquito projects. Genetics 169 :315–324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Mukabayire O, Caridi J, Wang X, Touré YT, Coluzzi M, Besansky NJ, 2001. Patterns of DNA sequence variation in chromosomally recognized taxa of Anopheles gambiae: evidence from rDNA and single-copy loci. Insect Mol Biol 10 :33–46.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Touré YT, Petrarca V, Traoré S, Coulibaly A, Maiga HM, Sankare O, Sow M, Di Deco MA, Coluzzi M, 1998. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia 40 :477–511.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Fanello C, Petrarca V, della Torre A, Santolamazza F, Dolo G, Coulibaly M, Alloueche A, Curtis CF, Touré YT, Coluzzi M, 2003. The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Insect Mol Biol 12 :241–245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23 :4407–4414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Mendelson TC, Shaw KL 2005. Use of AFLP markers in surveys of arthropod biodiversity. Methods Enzymol 395 :161–177.

  • 19

    Luikart G, England PR, Tallmon D, Jordan S, Taberlet P, 2003. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4 :981–994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Albertson RC, Markert JA, Danley PD, Kocher TD, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, east Africa. Proc Natl Acad Sci USA 96 :5107–5110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    della Torre A, 1997. Polytene chromosome preparation from Anopheline mosquitoes. Crampton JM, Beard CB, Louis C, eds. Molecular Biology of Insect Disease Vectors. London: Chapman and Hall, 329–336.

    • PubMed
    • Export Citation
  • 22

    Coluzzi M, Sabatini A, Petrarca V, Di Deco MA, 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73 :483–497.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Post R, Flook PK, Millest AL, 1993. Methods for the preservation of insects for DNA studies. Biochem Systematics Ecol 21 :85–92.

  • 24

    Peakall R, Smouse PE, 2001. GenAlEx version 5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Canberra, Australia; Australian National University. Available from http://www.anu.edu.au/BoZo/GenAlEx/

    • PubMed
    • Export Citation
  • 25

    Excoffier L, Smouse P, Quatro J, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131 :479–491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Rolf FJ, 1994. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. Version 1.80. Setauket, NY: Exeter Software.

    • PubMed
    • Export Citation
  • 27

    Duchesne P, Bernatchez L, 2002. AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2 :380–383.

  • 28

    Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I, 2002. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11 :139–151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Munstermann LE, 1994. Unexpected genetic consequences of colonization and inbreeding-allozyme tracking in Culicidae (Diptera). Ann Entomol Soc Am 87 :157–164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Norris DE, Shurtleff AC, Touré YT, Lanzaro GC, 2001. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 38 :336–340.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Garcia BA, Caccone A, Mathiopoulos KD, Powell JR, 1996. Inversion monophyly in African Anopheline malaria vectors. Genetics 143 :1313–1320.

  • 32

    Krimbass CB, Powell JR, 1992. Drosophila Inversion Polymorphism. Boca Raton, FL: CRC Press.

    • PubMed
    • Export Citation
  • 33

    Diabate A, Baldet T, Chandre C, Dabire KR, Kenge P, Guiguemde TR, Simard F, Guillet P, Hemingway J, Hougard JM, 2003. KDR mutation, a genetic marker to assess events of introgression between molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in the tropical savannah area of West Africa. J Med Entomol 40 :195–198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Favia G, Lanfrancotti A, Spanos L, Sidén-Kiamos I, Louis C, 2001. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 10 :19–23.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Gentile G, della Torre A, Maegga B, Powell JR, Caccone A, 2002. Genetic differentiation in the African malaria vector, Anopheles gambiae s.s., and the problem of taxonomic status. Genetics 161 :1561–1578.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Turner TL, Hahn MW, Nuzhdin SV, 2005. Genomic islands of speciation. PLoS Biol 3 :1572–1578.

  • 37

    Gentile G, Santolamazza F, Fanello C, Petrarca V, Caccone A, della Torre A, 2004. Variation in an intron sequence of the voltage-gated sodium channel gene correlates with genetic differentiation between Anopheles gambiae s.s. molecular forms. Insect Mol Biol 13 :371–377.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Kai Y, Nakayama K, Nakabo T, 2002. Genetic differences among three colour morphotypes of the black rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses. Mol Ecol 11 :2591–2598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Bleeker W, 2003. Hybridization and Rorippa austriaca (Brassi-caceae) invasion in Germany. Mol Ecol 12 :1831–1841.

  • 40

    Haig SM, Mullins TD, Forsman ED, Trail PW, 2003. Genetic identification of spotted owls, barred owls and their hybrids: legal implications of hybrid identity. Conservation Biol 18 :1347–1357.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Garzón CD, Geiser DM, Woorman GW, 2005. Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Dis 89 :81–89.

  • 42

    Wu CA, Campbell DR, 2005. Cytoplasmic and nuclear markers reveal contrasting patterns of spatial and genetic structure in a natural Ipomopsis hybrid zone. Mol Ecol 14 :781–792.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Weil C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettni P, Buitti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A, 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breeding 3 :381–390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    della Torre A, Merzagora L, Powell JR, Coluzzi M, 1997. Selective introgression of paracentric inversions between two sibling species of the Anopheles gambiae complex. Genetics 246 :239–244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, Fontenille D, Touré YT, Sagnon N’F, 2003. Semipermeable species boundaries between Anopheles gambiae and An. arabiensis: evidence from multilocus DNA sequence variation. Proc Natl Acad Sci USA 100 :10818–10823.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Slotman MA, della Torre A, Calzetta M, Powell JR, 2005. Differential introgression of chromosomal regions between Anopheles gambiae and An. arabiensis. Am J Trop Med Hyg 73 :326–335.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Lehmann T, Hawley WA, Grebert H, Collins FH, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15 :264–276.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 298 250 81
Full Text Views 121 12 9
PDF Downloads 32 7 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save