CELLULAR REACTIVITY TO THE P. FALCIPARUM PROTEIN TRAP IN ADULT KENYANS: NOVEL EPITOPES, COMPLEX CYTOKINE PATTERNS, AND THE IMPACT OF NATURAL ANTIGENIC VARIATION

KATIE L. FLANAGAN Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by KATIE L. FLANAGAN in
Current site
Google Scholar
PubMed
Close
,
MAGDALENA PLEBANSKI Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by MAGDALENA PLEBANSKI in
Current site
Google Scholar
PubMed
Close
,
KENNEDY ODHIAMBO Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by KENNEDY ODHIAMBO in
Current site
Google Scholar
PubMed
Close
,
ERIC SHEU Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by ERIC SHEU in
Current site
Google Scholar
PubMed
Close
,
TABITHA MWANGI Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by TABITHA MWANGI in
Current site
Google Scholar
PubMed
Close
,
COLIN GELDER Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by COLIN GELDER in
Current site
Google Scholar
PubMed
Close
,
KEITH HART Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by KEITH HART in
Current site
Google Scholar
PubMed
Close
,
MOSES KORTOK Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by MOSES KORTOK in
Current site
Google Scholar
PubMed
Close
,
BRETT LOWE Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by BRETT LOWE in
Current site
Google Scholar
PubMed
Close
,
KATHRYN J. ROBSON Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by KATHRYN J. ROBSON in
Current site
Google Scholar
PubMed
Close
,
KEVIN MARSH Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by KEVIN MARSH in
Current site
Google Scholar
PubMed
Close
, and
ADRIAN V. S. HILL Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; KEMRI Centre for Geographic Medicine—Coast, Kilifi, Kenya; Infection & Immunity, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom

Search for other papers by ADRIAN V. S. HILL in
Current site
Google Scholar
PubMed
Close
Restricted access

Malaria vaccines based on thrombospondin-related adhesive protein of Plasmodium falciparum (Pf TRAP) are currently undergoing clinical trials in humans. This study was designed to investigate naturally acquired cellular immunity to Pf TRAP in adults from a target population for future trials of TRAP-based vaccines in Kilifi, Kenya. We first tested reactivity to a panel of 53 peptides spanning Pf TRAP and identified 26 novel T-cell epitopes. A panel of naturally occurring polymorphic variant epitope peptides were made to the most commonly recognized epitope regions and tested for ability to elicit IFN-γ, IL-4, and IL-10 production. These data provide for the first time a complex cytokine matrix mapping naturally induced T-cell responses to TRAP and suggest that T-cell responses boosted by vaccination with Pf TRAP could stimulate the release of competing pro- and anti-inflammatory cytokines. They further define polymorphic variants able to boost specific Th1, Th2, and possibly Tr1 reactivity.

Author Notes

Reprint requests: Katie L. Flanagan, MRC Laboratories, P.O. Box 273, Fajara, The Gambia, Telephone: +220-4495442, Fax: +220-4495919, E-mail: kflanagan@mrc.gm.
  • 1

    WHO, 2000. Malaria—A Global Crisis. Geneva: WHO.

  • 2

    Nussenzweig V, Nussenzweig RS, 1989. Rationale for the development of an engineered sporozoite malaria vaccine. Adv Immunol 45 :283–334.

    • Search Google Scholar
    • Export Citation
  • 3

    Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, Gordon DM, Stoute JA, Church LW, Sedegah M, Heppner DG, Ballou WR, Richie TL, 2002. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185 :1155–1164.

    • Search Google Scholar
    • Export Citation
  • 4

    Rogers WO, Malik A, Mellouk S, Nakamura K, Rogers MD, Szarfman A, Gordon DM, Nussler AK, Aikawa M, Hoffman SL, 1992. Characterization of Plasmodium falciparum sporozoite surface protein 2. Proc Natl Acad Sci USA 89 :9176–9180.

    • Search Google Scholar
    • Export Citation
  • 5

    Hoffman SL, Oster CN, Mason C, Beier JC, Sherwood JA, Ballou WR, Mugambi M, Chulay JD, 1989. Human lymphocyte proliferative response to a sporozoite T cell epitope correlates with resistance to falciparum malaria. J Immunol 142 :1299–1303.

    • Search Google Scholar
    • Export Citation
  • 6

    Riley EM, Allen SJ, Bennett S, Thomas PJ, O’Donnell A, Lindsay SW, Good MF, Greenwood BM, 1990. Recognition of dominant T-cell stimulating epitopes from the circumsporozoite protein of Plasmodium falciparum and relationship to malaria morbidity in Gambian children. Trans R Soc Trop Med Hyg 84 :648–657.

    • Search Google Scholar
    • Export Citation
  • 7

    Khusmith S, Charoenvit Y, Kumar S, Sedegah M, Beaudoin RL, Hoffman SL, 1991. Protection against malaria by vaccination with sporozoite surface protein 2 plus CS protein. Science 252 :715–718.

    • Search Google Scholar
    • Export Citation
  • 8

    Khusmith S, Sedegah M, Hoffman SL, 1994. Complete protection against Plasmodium yoelii by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing the sporozoite surface protein 2. Infect Immun 62 :2979–2983.

    • Search Google Scholar
    • Export Citation
  • 9

    Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJH, Hannan CM, Becker M, Sinden R, Smith GL, Hill AVS, 1998. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4 :397–402.

    • Search Google Scholar
    • Export Citation
  • 10

    Kurtis JD, Lanar DE, Opollo M, Duffy PE, 1999. Interleukin-10 responses to liver-stage antigen 1 predict human resistance to Plasmodium falciparum. Infect Immun 67 :3424–3429.

    • Search Google Scholar
    • Export Citation
  • 11

    Luty AJF, Lell B, Schmidt-Ott R, Lehman LG, Luckner D, Greve B, Matousek P, Herbich K, Schmid D, Migot-Nabias F, Deloron P, Nussenzweig RS, Kremsner PG, 1999. Interferon-γ responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J Infect Dis 179 :980–988.

    • Search Google Scholar
    • Export Citation
  • 12

    Migot-Nabias F, Deloran P, Ringwald P, Dubois B, Mayombo J, Minh TN, Fievet N, Millet P, 2000. Immune response to Plasmodium falciparum liver stage antigen-1: geographical variations within Central Africa and their relationship with protection from clinical malaria. Trans R Soc Trop Med Hyg 94 :557–562.

    • Search Google Scholar
    • Export Citation
  • 13

    Reece WH, Pinder M, Gothard PK, Milligan P, Bojang K, Doherty T, Plebanski M, Akinwunmi P, Everaere S, Watkins KR, Voss G, Tornieporth N, Alloueche A, Greenwood BM, Kester KE, McAdam KP, Cohen J, Hill AV, 2004. A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med 10 :406–410.

    • Search Google Scholar
    • Export Citation
  • 14

    McConkey SJ, Moorthy VS, Webster D, Dunachie S, Butcher G, Vuola JM, Blanchard TJ, Gothard P, Watkins K, Hannan CM, Everaere S, Brown K, Kester KE, Cummings J, Williams J, Heppner DG, Pathan A, Flanagan K, Arulanantham N, Roberts MT, Roy M, Smith GL, Schneider J, Peto T, Sinden RE, Gilbert SC, Hill AV, 2003. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia Ankara in humans. Nat Med 9 :729–735.

    • Search Google Scholar
    • Export Citation
  • 15

    Moorthy VS, Imoukhuede EB, Milligan P, Bojang K, Keating S, Kaye P, Pinder M, Gilbert SC, Walraven G, Greenwood BM, Hill AV, 2004. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLOS Med 33 :128–136.

    • Search Google Scholar
    • Export Citation
  • 16

    Flanagan KL, Plebanski M, Akinwunmi P, Lee EAM, Reece WHH, Robson KJH, Hill AVS, Pinder M, 1999. Broadly distributed T cell reactivity, with no immunodominant loci, to the pre-erythrocytic antigen thrombospondin-related adhesive protein of Plasmodium falciparum in West Africans. Eur J Immunol 29 :1943–1954.

    • Search Google Scholar
    • Export Citation
  • 17

    Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V, 1987. Gamma-Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature (Lond) 330 :664–666.

    • Search Google Scholar
    • Export Citation
  • 18

    Schofield L, Ferreira A, Altszuler R, Nussenzweig V, Nussenzweig RS, 1987. Interferon-gamma inhibits the intrahepatocytic development of malaria parasites in vitro. J Immunol 139 :2020–2025.

    • Search Google Scholar
    • Export Citation
  • 19

    Mellouk S, Green S, Nacy C, Hoffman SL, 1991. IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism. J Immunol 146 :3971–3976.

    • Search Google Scholar
    • Export Citation
  • 20

    Seguin MC, Klotz FW, Schneider I, Weir JP, Goodbary M, Slayter M, Raney JJ, Aniagolu JU, Green SJ, 1994. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells. J Exp Med 180 :353–358.

    • Search Google Scholar
    • Export Citation
  • 21

    Mellouk SO, Hoffman SL, Liu ZZ, de la Vega P, Billar TR, Nussler AK, 1994. Nitric oxide-mediated antiplasmodial activity in human and murine hepatocytes induced by gamma interferon and the parasite itself: enhancement by exogenous tetrahydrobiopterin. Infect Immun 62 :4043–4046.

    • Search Google Scholar
    • Export Citation
  • 22

    Robson KJH, Hall JRS, Davies LC, Crisanti A, Hill AVS, Wellems TE, 1990. Polymorphism of the TRAP gene of Plasmodium falciparum. Proc R Soc 242 :205–216.

    • Search Google Scholar
    • Export Citation
  • 23

    Robson KJH, Dolo A, Hackford IR, Doumbo O, Richards MB, Keita MM, Sidibi T, Bosman A, Modiano D, Crisanti A, 1998. Natural polymorphism of the thrombospondin-related adhesive protein of Plasmodium falciparum. Am J Trop Med Hyg 58 :81–89.

    • Search Google Scholar
    • Export Citation
  • 24

    Robson KJH, 1993. Approaches to studying genetic diversity of Plasmodium falciparum using DNA sequence variation. Parasitologia 35 (Suppl):91–94.

    • Search Google Scholar
    • Export Citation
  • 25

    Bunce M, O’Neill CM, Barnardo MCNM, Krausa P, Browning MJ, Morris PJ, Welsh KI, 1995. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilising sequence-specific primers (PCR-SSP). Tissue Antigens 46 :355–367.

    • Search Google Scholar
    • Export Citation
  • 26

    Flanagan KL, Lee EAM, Gravenor MB, Reece WHH, Urban BC, Doherty T, Bojang KA, Pinder M, Hill AVS, Plebanski M, 2001. Unique T cell effector functions elicited by Plasmodium falciparum epitopes in malaria-exposed Africans tested by three T cell assays. J Immunol 167 :4729–4737.

    • Search Google Scholar
    • Export Citation
  • 27

    Doolan DL, Southwood S, Chesnut R, Apella E, Gomez E, Richards A, Higashimoto YI, Maewal A, Sidney J, Gramzinski RA, Mason C, Koech D, Hoffman SL, Sette A, 2000. HLA-DR-promiscuous T cell epitopes from Plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. J Immunol 165 :1123–1137.

    • Search Google Scholar
    • Export Citation
  • 28

    Flanagan KL, Mwangi T, Plebanski M, Odhiambo K, Ross A, Kinyanjui S, Kortok M, Lowe B, Sheu E, Marsh K, Hill AVS, 2003. Ex vivo interferon gamma immune response to TRAP in coastal Kenyans: longevity and risk of P. falciparum infection. Am J Trop Med Hyg 68 :421–430.

    • Search Google Scholar
    • Export Citation
  • 29

    Doolan DL, Hoffman SL, Southwood S, Wentworth PA, Sidney J, Chesnut RW, Keogh E, Apella E, Nutman TB, Lal AA, Gordon DM, Oloo A, Sette A, 1997. Degenerate cytotoxic T cell epitopes from P. falciparum restricted by multiple HLA-A and HLA-B supertype alleles. Immunity 7 :97–112.

    • Search Google Scholar
    • Export Citation
  • 30

    Good MF, Pombo D, Quakyi IA, Riley EM, Houghten RA, Menon A, Alling DW, Berzofsky JA, Miller LH, 1988. Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc Natl Acad Sci USA 85 :1199–1203.

    • Search Google Scholar
    • Export Citation
  • 31

    Kabilan L, Troye-Blomberg M, Perlmann H, Andersson G, Hogh B, Peterson E, Bjorkmann A, Perlmann P, 1988. T-cell epitopes in Pf155/RESA, a major candidate for a Plasmodium falciparum malaria vaccine. Proc Natl Acad Sci USA 85 :5659–5663.

    • Search Google Scholar
    • Export Citation
  • 32

    Udhayakumar V, Anyona D, Kariuki S, Shi YP, Bloland PB, Branch OH, Weiss W, Nahlen BL, Kaslow DC, Lal AA, 1995. Identification of T and B cell epitopes recognized by humans in the C-terminal 42-kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)-1. J Immunol 154 :6022–6030.

    • Search Google Scholar
    • Export Citation
  • 33

    Perlaza BL, Sauzet JP, Balde AT, Brahimi K, Tall A, Corradin G, Druilhe P, 2001. Long synthetic peptides encompassing the Plasmodium falciparum LSA-3, the target of human B and T cells and are potent inducers of B helper, T helper and cytolytic T cell responses in mice. Eur J Immunol 31 :2200–2209.

    • Search Google Scholar
    • Export Citation
  • 34

    Vanderlugt CL, Begolka WS, Neville KL, Katz-Levy Y, Howard LM, Eagar TN, Bluestone J, Miller SD, 1998. The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunol Rev 164 :63–72.

    • Search Google Scholar
    • Export Citation
  • 35

    Vanderlugt CL, Miller SD, 2002. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2 :85–95.

    • Search Google Scholar
    • Export Citation
  • 36

    Plebanski M, Flanagan KL, Lee EAM, Reece WHH, Hart K, Gelder C, Gillespie G, Pinder M, Hill AVS, 1999. Interleukin 10-mediated immunosuppression by a variant CD4 T cell epitope of Plasmodium falciparum. Immunity 10 :651–660.

    • Search Google Scholar
    • Export Citation
  • 37

    de la Cruz V, Maloy WL, Miller LH, Lal AA, Good MF, Mc-Cutchan TF, 1988. Lack of cross-reactivity between variant T cell determinants from malaria circumsporozoite protein. J Immunol 141 :2456–2460.

    • Search Google Scholar
    • Export Citation
  • 38

    Zevering Y, Khamboonruang C, Good MF, 1994. Natural amino acid polymorphisms of the circumsporozoite protein of Plasmodium falciparum abrogate specific human CD4+ T cell responsiveness. Eur J Immunol 24 :1418–1425.

    • Search Google Scholar
    • Export Citation
  • 39

    Groux H, Powrie F, 1999. Regulatory T cells and inflammatory bowel disease. Immunol Today 20 :442–444.

Past two years Past Year Past 30 Days
Abstract Views 20 20 9
Full Text Views 238 76 0
PDF Downloads 40 13 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save