THE EFFECT OF DEFORESTATION ON THE HUMAN-BITING RATE OF ANOPHELES DARLINGI, THE PRIMARY VECTOR OF FALCIPARUM MALARIA IN THE PERUVIAN AMAZON

AMY YOMIKO VITTOR School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by AMY YOMIKO VITTOR in
Current site
Google Scholar
PubMed
Close
,
ROBERT H. GILMAN School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by ROBERT H. GILMAN in
Current site
Google Scholar
PubMed
Close
,
JAMES TIELSCH School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by JAMES TIELSCH in
Current site
Google Scholar
PubMed
Close
,
GREGORY GLASS School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by GREGORY GLASS in
Current site
Google Scholar
PubMed
Close
,
TIM SHIELDS School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by TIM SHIELDS in
Current site
Google Scholar
PubMed
Close
,
WAGNER SÁNCHEZ LOZANO School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by WAGNER SÁNCHEZ LOZANO in
Current site
Google Scholar
PubMed
Close
,
VIVIANA PINEDO-CANCINO School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by VIVIANA PINEDO-CANCINO in
Current site
Google Scholar
PubMed
Close
, and
JONATHAN A. PATZ School of Medicine, Stanford University, Stanford, California; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Asociación Benéfica PRISMA (Proyectos en Informatica, Salud, Medicina y Agricultura), Lima, Peru; Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by JONATHAN A. PATZ in
Current site
Google Scholar
PubMed
Close
Restricted access

To examine the impact of tropical rain-forest destruction on malaria, we conducted a year-long study of the rates at which the primary malaria vector in the Amazon, Anopheles darlingi, fed on humans in areas with varying degrees of ecological alteration in the Peruvian Amazon. Mosquitoes were collected by human biting catches along the Iquitos-Nauta road at sites selected for type of vegetation and controlled for human presence. Deforested sites had an A. darlingi biting rate that was more than 278 times higher than the rate determined for areas that were predominantly forested. Our results indicate that A. darlingi displays significantly increased human-biting activity in areas that have undergone deforestation and development associated with road development.

Author Notes

Reprint requests: Jonathan A. Patz, Associate Professor and Director, Global Environmental Health, Center for Sustainability and the Global Environment (SAGE), Nelson Institute for Environmental Studies and the Department of Population Health Sciences, University of Wisconsin at Madison, 1710 University Avenue, Madison, WI 53726, Telephone: 608-262-4775, Fax: 608-265-4113, E-mail: patz@wisc.edu.
  • 1

    Gratz NG, 1999. Emerging and resurging vector-borne diseases. Ann Rev Entomol 55 :51–75.

  • 2

    Molyneaux DH, 2003. Common themes in changing vector-borne disease scenarios. Trans R Soc Trop Med Hyg 97 :129–132.

  • 3

    Walsh JF, Molyneaux DH, Birley MH, 1993. Deforestation: effects on vector-borne disease. Parasitology 106 :S55–S75.

  • 4

    Kalliola R, Flores-Paitan S, 1998. Geoecologia y desarolla amazonico: estudio integrado en la zona de Iquitos, Peru. Annales Universitatis Turkuensis Ser A II. Turku, Finland: Turku University, 544.

    • PubMed
    • Export Citation
  • 5

    Singer BH, de Castro MC, 2001. Agricultural colonization and malaria on the Amazon frontier. Ann N Y Acad Sci 954 :184–222.

  • 6

    Serra-Vega J, 1990. Andean settlers rush for Amazonia. Earthwatch 39 :7–9.

  • 7

    Fearnside PM, 1993. Deforestation in Brazilian Amazonia—the effect of population and land-tenure. Ambio 22 :537–545.

  • 8

    Flores-Paitan S, Gomez-Romero E, Kalliola R, 1998. Caracteristicas generales de la zona de Iquitos. Kalliola R, Flores-Paitan S, eds. Geoecologia y desarrollo Amazonico. Sulkava: Finnreklama Oy, 17–31.

    • PubMed
    • Export Citation
  • 9

    Gomez-Romero E, Tamariz-Ortiz T, 1998. Uso de la tierra y patrones de deforestacion en la zona de Iquitos. Kalliola R, Flores-Paitan S, eds. Geoecologia y Desarrollo Amazonico. Sulkava: Finnreklama Oy.

    • PubMed
    • Export Citation
  • 10

    Povoa MM, Conn JE, Schlichting CD, Amaral JCOF, Segura MNO, Da Silva ANM, Dos Santos CCB, Lacerda RNL, De Souza RTL, Galiza D, Santa Rosa EP, Wirtz RA, 2003. Malaria Vectors, epidemiology, and the re-emergence of Anopheles darlingi in Belm, Para, Brazil. J Med Entomol 40 :379–386.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Downs WG, Pittendrigh CS, 1949. Bromeliad malaria in Trinidad, British West Indies. Am J Trop Med Hyg 26 :47–66.

  • 12

    Tadei WP, Thatcher BD, Santos JMH, Scarpassa VM, Rodrigues IB, Rafael MS, 1998. Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg 59 :325–335.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Consoli RAGB, Lourenço-de-Oliveira R, 1994. Principais mosquitos de importancia sanitaria no Brasil. Rio de Janeiro: Fiocruz.

    • PubMed
    • Export Citation
  • 14

    Horsfall WR, 1955. Mosquitoes: Their Bionomics and Relation to Disease. New York: The Ronal Press.

    • PubMed
    • Export Citation
  • 15

    Hudson JE, 1984. Anopheles darlingi Root (Diptera: Culicidae) in the Suriname rain forest. Bull Entomol Res 74 :129–142.

  • 16

    Rozendaal JA, 1992. Relations between Anopheles darlingi breeding habitats, rainfall, river level and malaria transmission rates in the rain forest of Suriname. Med Vet Entomol 6 :16–22.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Need JT, Rogers EJ, Phillips IA, Falcon R, Fernandez R, Carbajal F, Quintana J, 1993. Mosquitoes (Diptera: Culicidae) captured in the Iquitos area of Peru. J Med Entomol 30 :635–638.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Calderon G, Fernandez R, Valle J, 1995. Especies de la fauna anofelina, su distribucion y algunas consideraciones sobre su abundancia e infectividad en el Peru. Rev Per Entomol 8 :5–23.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Charlwood JD, Alecrim WA, 1989. Capture-recapture studies with the South American malaria vector Anopheles darlingi, Root. Ann Trop Med Parasitol 83 :569–576.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Mather PM, 1999. Computer Processing of Remotely-Sensed Images: An Introduction. West Sussex: John Wiley & Sons.

    • PubMed
    • Export Citation
  • 21

    Rubio-Palis Y, 1994. Variation of the vectorial capacity of some anophelines in western Venezuela. Am J Trop Med Hyg 50 :420–424.

  • 22

    Tadei WP, Dutary Thatcher B, 2000. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop S Paulo 42 :87–94.

  • 23

    Oliveira-Ferreira J, Lourenco-de-Oliveira R, Teva A, Deane LM, Daniel-Ribeiro CT, 1990. Natural malaria infections in Anophelines in Rondonia state, Brazilian Amazon. Am J Trop Med Hyg 43 :6–10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Charlwood JD, 1996. Biological variation in Anopheles darlingi Root. Memorias do Instituto Oswaldo Cruz 91 :391–398.

  • 25

    Klein T, Lima JBP, Toda Tang A, 1991. Biting behavior of Anopheles mosquitoes in Costa Marques, Rondonia, Brazil. Rev Soc Bras Med Trop 24 :13–20.

  • 26

    Oliveira-Ferreira J, Lourenco-de-Oliveira R, Deane LM, Daniel-Ribeiro CT, 1992. Feeding preference of Anopheles darlingi in malaria endemic areas of Rondonia state—Northwestern Brazil. Mem Inst Oswaldo Cruz 87 :601–602.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Klein T, Lima JBP, Tada MS, Miller R, 1991. Comparative susceptibility of Anopheline mosquitoes in Rondonia, Brazil to infection by Plasmodium vivax. Am J Trop Med Hyg 45 :463–470.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Hamilton LC, 1998. Statistics with Stata 5. Pacific Grove: Duxbury Press.

  • 29

    Manguin S, Roberts DR, Andre RG, Rejmankova E, Hakre S, 1996. Characterization of Anopheles darlingi (Diptera: Culicidae) larval habitats in Belize, Central America. J Med Entomol 33 :63–69.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Deane LM, Causey OR, Deane MP, 1948. Notas sobre a distribucao e a biologia dos anofelinos das Regioes Nordestina e Amazonica do Brasil. Revista do Serv. Esp Saude Publica 1 :827–966.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Charlwood JD, 1980. Observations on the bionomics of Anopheles darlingi Root (Diptera: Culicidae) from Amazonas, Brazil. Bull Entomol Res 70 :685–692.

  • 32

    Rozendaal JA, 1989. Biting and resting behaviour of Anopheles darlingi in the Suriname rainforest. J Am Mosq Control Assoc 5 :351–358.

  • 33

    Roberts RD, Alecrim WD, Tavares AM, Radke MG, 1987. The house frequenting, host seeking and resting behavior of Anopheles darlingi in the southeastern Amazonas, Brazil. J Am Mosq Control Assoc 3 :433–441.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Rosa-Freitas MG, Broomfield G, Priestman A, Milligan PJ, Momen H, Molyneux DH, 1992. Cuticular hydrocarbons, isoenzymes and behavior of three populations of Anopheles darlingi from Brazil. J Am Mosq Control Assoc 4 :357–366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Mcgreevy PB, Dietze R, Prata A, Hembree SC, 1989. Effects of immigration on the prevalence of malaria in rural-areas of the Amazon Basin of Brazil. Mem Inst Oswaldo Cruz 84 :485–491.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 667 610 34
Full Text Views 1610 26 0
PDF Downloads 855 29 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save