• 1

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 :97–106.

  • 2

    Clyde DF, 1990. Immunity to falciparum and vivax malaria induced by irradiated sporozoites: a review of the University of Maryland studies, 1971–1975. Bull World Health Organ 68 (Suppl):9–12.

    • Search Google Scholar
    • Export Citation
  • 3

    Herrington D, Davis J, Nardin E, Beier M, Cortese J, Eddy H, Losonsky G, Hollingdale M, Sztein M, Levine M, Nussenzweig M, Clyde RS, Edelman DR, 1991. Successful immunization of humans with irradiated malaria sporozoites: humoral and cellular responses of the protected individuals. Am J Trop Med Hyg 45 :539–547.

    • Search Google Scholar
    • Export Citation
  • 4

    Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, Gordon DM, Stoute JA, Church LW, Sedegah M, Heppner DG, Ballou WR, Richie TL, 2002. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185 :1155–1164.

    • Search Google Scholar
    • Export Citation
  • 5

    Nussenzweig RS, Vanderberg J, Most H, Orton C, 1967. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216 :160–162.

    • Search Google Scholar
    • Export Citation
  • 6

    Yoshida N, Nussenzweig RS, Potocnjak P, Nussenzweig V, Aikawa M, 1980. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science 207 :71–73.

    • Search Google Scholar
    • Export Citation
  • 7

    Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nussenzweig V, Zavala F, 1989. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341 :323–326.

    • Search Google Scholar
    • Export Citation
  • 8

    Tsuji M, Romero P, Nussenzweig RS, Zavala F, 1990. CD4+ cytolytic T cell clone confers protection against murine malaria. J Exp Med 172 :1353–1357.

    • Search Google Scholar
    • Export Citation
  • 9

    Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, Wellde BT, Garcon N, Krzych U, Marchand M, 1997. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N Engl J Med 336 :86–91.

    • Search Google Scholar
    • Export Citation
  • 10

    Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, Ballou WR, Conway DJ, Reece WH, Gothard P, Yamuah L, Delchambre M, Voss G, Greenwood BM, Hill A, McAdam KP, Tornieporth N, Cohen JD, Doherty T, 2001. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 358 :1927–1934.

    • Search Google Scholar
    • Export Citation
  • 11

    Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, Guinovart C, Espasa M, Bassat Q, Aide P, Ofori-Anyinam O, Navia MM, Corachan S, Ceuppens M, Dubois MC, Demoitie MA, Dubovsky F, Menendez C, Tornieporth N, Ballou WR, Thompson R, Cohen J, 2004. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 364 :1411–1420.

    • Search Google Scholar
    • Export Citation
  • 12

    Good MF, Berzofsky JA, Miller LH, 1988. The T cell response to the malaria circumsporozoite protein: an immunological approach to vaccine development. Annu Rev Immunol 6 :663–688.

    • Search Google Scholar
    • Export Citation
  • 13

    Nardin E, Clavijo P, Mons B, van Belkum A, Ponnudurai T, Nussenzweig RS, 1991. T cell epitopes of the circumsporozoite protein of Plasmodium vivax. Recognition by lymphocytes of a sporozoite-immunized chimpanzee. J Immunol 146 :1674–1678.

    • Search Google Scholar
    • Export Citation
  • 14

    Herrera S, Escobar P, de Plata C, Avila GI, Corradin G, Herrera MA, 1992. Human recognition of T cell epitopes on the Plasmodium vivax circumsporozoite protein. J Immunol 148 :3986–3990.

    • Search Google Scholar
    • Export Citation
  • 15

    Herrera S, de Plata C, Gonzalez M, Perlaza BL, Bettens F, Corradin G, Arevalo-Herrera M, 1997. Antigenicity and immunogenicity of multiple antigen peptides (MAP) containing P. vivax CS epitopes in Aotus monkeys. Parasite Immunol 19 :161–170.

    • Search Google Scholar
    • Export Citation
  • 16

    Arevalo-Herrera M, Roggero MA, Gonzalez JM, Vergara J, Corradin G, Lopez JA, Herrera S, 1998. Mapping and comparison of the B-cell epitopes recognized on the Plasmodium vivax circumsporozoite protein by immune Colombians and immunized Aotus monkeys. Ann Trop Med Parasitol 92 :539–551.

    • Search Google Scholar
    • Export Citation
  • 17

    Coppi A, Pinzon-Ortiz C, Hutter C, Sinnis P, 2005. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med 201 :27–33.

    • Search Google Scholar
    • Export Citation
  • 18

    Mota MM, Rodriguez A, 2002. Invasion of mammalian host cells by Plasmodium sporozoites. Bioessays 24 :149–156.

  • 19

    Ancsin JB, Kisilevsky R, 2004. A binding site for highly sulfated heparan sulfate is identified in the N terminus of the circum-sporozoite protein. J Biol Chem 279 :21824–21832.

    • Search Google Scholar
    • Export Citation
  • 20

    Charoenvit Y, Collins WE, Jones TR, Millet P, Yuan L, Campbell GH, Beaudoin RL, Broderson JR, Hoffman SL, 1991. Inability of malaria vaccine to induce antibodies to a protective epitope within its sequence. Science 251 :668–671.

    • Search Google Scholar
    • Export Citation
  • 21

    Herrera S, Bonelo A, Perlaza BL, Valencia AZ, Cifuentes C, Hurtado S, Quintero G, Lopez JA, Corradin G, Arevalo-Herrera M, 2004. Use of long synthetic peptides to study the antigenicity and immunogenicity of the Plasmodium vivax circumsporozoite protein. Int J Parasitol. 34 :1535–1546.

    • Search Google Scholar
    • Export Citation
  • 22

    Herrera S, Victoria L, Fernández O, Bonelo A, Perlaza BL, Zapata C, Overgaauw D, Leon M, Galindo E, Valencia N, Acuña LM, Quintero G, Restrepo N, Velez JD, Mendez F, Villegas A, Corradin G, Arevalo-Herrera M, 2005. Proceso para el de-sarrollo de una vacuna contra la fase hepática de Plasmodium vivax. Colombia Med 36 :5–8.

    • Search Google Scholar
    • Export Citation
  • 23

    Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A, 1989. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 19 :2237–2242.

    • Search Google Scholar
    • Export Citation
  • 24

    Valmori D, Pessi A, Bianchi E, Corradin G, 1992. Use of human universally antigenic tetanus toxin T cell epitopes as carriers for human vaccination. J Immunol 149 :717–721.

    • Search Google Scholar
    • Export Citation
  • 25

    Atherton E, Logan JC, Sheppard RC, 1981. Peptide synthesis. II. Procedures for solid phase synthesis using N-fluorenyl-methysoxycarbamylamino-acid on polymide supports: synthesis of substance P and of acyl carrier protein 65–74 decapeptide. J Chem Soc Lond Perkin Trans 1 :538–548.

    • Search Google Scholar
    • Export Citation
  • 26

    National Cancer Institute, 1998. Common Toxicity Criteria. Version 2.0:1–30.

  • 27

    WHO, 2002. Workbook for Clinical Monitor. TDR/PRD Standard Operating Procedures (SOPs) and Guidelines. Geneva: World Health Organization, 281–288.

  • 28

    Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye D, 1997. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 15 :176–178.

    • Search Google Scholar
    • Export Citation
  • 29

    Saul A, Lawrence G, Smillie A, Rzepczyk CM, Reed C, Taylor D, Anderson K, Stowers A, Kemp R, Allworth A, Anders RF, Brown GV, Pye D, Schoofs P, Irving DO, Dyer SL, Woodrow GC, Briggs WR, Reber R, Sturchler D, 1999. Human phase I vaccine trials of 3 recombinant asexual stage malaria antigens with Montanide ISA720 adjuvant. Vaccine 17 :3145–3159.

    • Search Google Scholar
    • Export Citation
  • 30

    Lopez JA, Weilenman C, Audran R, Roggero MA, Bonelo A, Tiercy JM, Spertini F, Corradin G, 2001. A synthetic malaria vaccine elicits a potent CD8(+) and CD4(+) T lymphocyte immune response in humans. Implications for vaccination strategies. Eur J Immunol 31 :1989–1998.

    • Search Google Scholar
    • Export Citation
  • 31

    Genton B, Al-Yaman F, Betuela I, Anders RF, Saul A, Baea K, Mellombo M, Taraika J, Brown GV, Pye D, Irving DO, Felger I, Beck HP, Smith TA, Alpers MP, 2003. Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1, MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children. Vaccine 22 :30–41.

    • Search Google Scholar
    • Export Citation
  • 32

    Arevalo-Herrera M, Valencia AZ, Vergara J, Bonelo A, Fleischhauer K, Gonzalez JM, Restrepo JC, Lopez JA, Valmori D, Corradin G, Herrera S, 2002. Identification of HLA-A2 restricted CD8(+) T-lymphocyte responses to Plasmodium vivax circumsporozoite protein in individuals naturally exposed to malaria. Parasite Immunol 24 :161–169.

    • Search Google Scholar
    • Export Citation
  • 33

    Herrington DA, Nardin EH, Losonsky G, Bathurst IC, Barr PJ, Hollingdale MR, Edelman R, Levine MM, 1991. Safety and immunogenicity of a recombinant sporozoite malaria vaccine against Plasmodium vivax. Am J Trop Med Hyg 45 :695–701.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

SAFETY AND ELICITATION OF HUMORAL AND CELLULAR RESPONSES IN COLOMBIAN MALARIA-NAIVE VOLUNTEERS BY A PLASMODIUM VIVAX CIRCUMSPOROZOITE PROTEIN–DERIVED SYNTHETIC VACCINE

View More View Less
  • 1 Instituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Fundación Clínica Valle del Lili, Cali, Colombia; Division of Infectious Diseases, Federal University of Sao Paulo, Sao Paulo, Brazil; Family Health International, Durham, North Caarolina; Biochemistry Institute, University of Lausanne, Lausanne, Switzerland

Substantial experimental evidence indicates that the Plasmodium circumsporozoite (CS) protein has great potential as a vaccine candidate. We tested the safety and immunogenicity of vaccines composed of P. vivax CS-derived synthetic peptides. Sixty-nine healthy, malaria-naive volunteers were randomized to receive three injections of placebo or synthetic proteins N, R, or C (10, 30, or 100 μg/dose) in a double-blinded fashion. Vaccines were well tolerated and no serious adverse events were observed. Peptides N and R elicited humoral responses at all doses; peptide C elicicted these responses only at doses of 30 and 100 μg. The N peptide at a dose of 100 μg elicited the greatest antibody response. Antibodies to the three peptides recognized P. vivax sporozoites in an immunofluorescent antibody test. Peripheral blood mononuclear cells from most immunized volunteers also produced interferon-γ upon peptide in vitro stimulation. These vaccines appear safe, well tolerated, and immunogenic in malaria-naive volunteers. Further optimization and development of this vaccine is being attempted to conduct phase II clinical trials.

Author Notes

Reprint requests: Sócrates Herrera, Malaria Vaccine and Drug Development Center, Carrera 35 No 4A-53, Cali, Colombia.
Save