• 1

    Meixner MD, McPheron BA, Silva JG, Gasparich GE, Sheppard WS, 2002. The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability. Mol Ecol 11 :891–899.

    • Search Google Scholar
    • Export Citation
  • 2

    Silva JG, Meixner MD, McPheron BA, Steck GJ, Sheppard WS, 2003. Recent Mediterranean fruit fly (Diptera: Tephritidae) infestations in Florida–a genetic perspective. J Econ Entomol 96 :1711–1718.

    • Search Google Scholar
    • Export Citation
  • 3

    Paupy C, Girod R, Salvan M, Rodhain F, Failloux AB, 2001. Population structure of Aedes albopictus from La Reunion Island (Indian Ocean) with respect to susceptibility to a dengue virus. Heredity 87 :273–283.

    • Search Google Scholar
    • Export Citation
  • 4

    Knox TB, Kay BH, Hall RA, Ryan PA, 2003. Enhanced vector competence of Aedes aegypti (Diptera: Culicidae) from the Torres Strait compared with mainland Australia for dengue 2 and 4 viruses. J Med Entomol 40 :950–956.

    • Search Google Scholar
    • Export Citation
  • 5

    Ross KG, Trager JC, 1990. Evolution. Systematics and population genetics of fire ants (Solenopsis saevissima complex) from Argentina. Evolution 44 :2113–2134.

    • Search Google Scholar
    • Export Citation
  • 6

    Tsutsui ND, Suarez AV, Holway DA, Case TJ, 2000. Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci U S A 97 :5948–5953.

    • Search Google Scholar
    • Export Citation
  • 7

    Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, 2004. Emerging vectors in the Culex pipiens complex. Science 303 :1535–1538.

    • Search Google Scholar
    • Export Citation
  • 8

    Kolbe JJ, Glor RE, Rodriguez Schettino L, Lara AC, Larson A, Losos JB, 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431 :177–181.

    • Search Google Scholar
    • Export Citation
  • 9

    Tanaka K, Mizusawa K, Saugstad ES, 1979. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara islands) and Korea (Diptera: Culicidae). Contributions of the American Entomological Institute 16 :1–987.

    • Search Google Scholar
    • Export Citation
  • 10

    Andreadis TG, Anderson JF, Munstermann LE, Wolfe RJ, Florin DA, 2001. Discovery, distribution, and abundance of the newly introduced mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, USA. J Med Entomol 38 :774–779.

    • Search Google Scholar
    • Export Citation
  • 11

    Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ, 1999. Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control Assoc 15 :238–241.

    • Search Google Scholar
    • Export Citation
  • 12

    Moore CG, Mitchell CJ, 1997. Aedes albopictus in the United States: ten-year presence and public health implications. Emerging Infectious Diseases 3 :329–334.

    • Search Google Scholar
    • Export Citation
  • 13

    Falco RC, Daniels TJ, Slameck MC, 2002. Prevalence and distribution of Ochlerotatus japonicus (Diptera: Culicidae) in two counties in southern New York State. J Med Entomol 39 :920–925.

    • Search Google Scholar
    • Export Citation
  • 14

    Roppo MR, Lilja JL, Maloney FA, Sames WJ, 2004. First occurrence of Ochlerotatus japonicus in the state of Washington. J Am Mosq Control Assoc 20 :83–84.

    • Search Google Scholar
    • Export Citation
  • 15

    Joy JE, 2004. Larval mosquitoes in abandoned tire pile sites from West Virginia. J Am Mosq Control Assoc 20 :12–17.

  • 16

    Schaffner F, Chouin S, Guilloteau J, 2003. First record of Ochlerotatus (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J Am Mosq Control Assoc 19 :1–5.

    • Search Google Scholar
    • Export Citation
  • 17

    Takashima I, Rosen L, 1989. Horizontal and vertical transmission of Japanese encephalitis virus by Aedes japonicus (Diptera: Culicidae). J Med Entomol 26 :454–458.

    • Search Google Scholar
    • Export Citation
  • 18

    Turell MJ, O’Guinn ML, Dohm DJ, Jones JW, 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38 :130–134.

    • Search Google Scholar
    • Export Citation
  • 19

    Sardelis MR, Turell MJ, Andre RG, 2001. Ochlerotatus j. japonicus in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. J Am Mosq Control Assoc. 2 :137–141.

    • Search Google Scholar
    • Export Citation
  • 20

    Sardelis MR, Dohm DJ, Pagac B, Andre RG, Turell MJ, 2002. Experimental transmission of eastern equine encephalitis virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol 39 :480–484.

    • Search Google Scholar
    • Export Citation
  • 21

    Sardelis MR, Turell MJ, Andre RG, 2002. Laboratory transmission of La Crosse virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol 39 :635–639.

    • Search Google Scholar
    • Export Citation
  • 22

    Sardelis MR, Turell MJ, Andre RG, 2003. Experimental transmission of St. Louis encephalitis virus by Ochlerotatus j. japonicus. J Am Mosq Control Assoc Jun 19 :159–162.

    • Search Google Scholar
    • Export Citation
  • 23

    Kutz FW, Wade TG, Pagac BB, 2003. A geospatial study of the potential of two exotic species of mosquitoes to impact the epidemiology of West Nile virus in Maryland. J Am Mosq Control Assoc 19 :190–198.

    • Search Google Scholar
    • Export Citation
  • 24

    Belton P, Belton OC, 1990. Aedes togoi comes aboard. J Am Mosq Control Assoc 6 :328–329.

  • 25

    Pafume BA, Campos EG, Francy DB, Peyton EL, Davis AN, Nelms M, 1988. Discovery of Aedes (Howardina) bahamensis in the United States. J Am Mosq Control Assoc 4 :380.

    • Search Google Scholar
    • Export Citation
  • 26

    Lounibos LP, 2002. Invasions by insect vectors of human disease. Annu Rev Entomol 47 :233–266.

  • 27

    Sames WJ, Herman WE, Florin DA, Maloney FA, 2004. Distribution of Ochlerotatus togoi along the Pacific coast of Washington. J Am Mosq Control Assoc 20 :105–109.

    • Search Google Scholar
    • Export Citation
  • 28

    Tsutsui ND, Suarez AV, Holway DA, Case TJ, 2001. Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10 :2151–2161.

    • Search Google Scholar
    • Export Citation
  • 29

    Zhang DX, Hewitt GM, 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12 :563–584.

    • Search Google Scholar
    • Export Citation
  • 30

    Reinert JF, 2000. New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. J Am Mosq Control Assoc 16 :175–188.

    • Search Google Scholar
    • Export Citation
  • 31

    Fagerberg AJ, Fulton RE, Black WC, 2001. Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 10 :225–236.

    • Search Google Scholar
    • Export Citation
  • 32

    Sunnucks P, 2000. Efficient genetic markers for population biology. Trends in Ecology and Evolution 15 :199–203.

  • 33

    Elsik CG, Williams CG, 2001. Low-copy microsatellite recovery from a conifer genome. Theor Appl Genet 103 :1189–1195.

  • 34

    McLain DK, Rai KS, Fraser MJ, 1987. Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup. Heredity 58 :373–381.

    • Search Google Scholar
    • Export Citation
  • 35

    Rao PN, Rai K, 1987. Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity 59 :253–258.

  • 36

    Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Molecular Ecology Notes. 4: 20–22.

  • 37

    Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC, 1999. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27 :500-2–504-7.

    • Search Google Scholar
    • Export Citation
  • 38

    Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

  • 39

    Fonseca DM, Campbell S, Crans WJ, Mogi M, Miyagi I, Toma T, Bullians M, Andreadis TG, Berry RL, Pagac B, Sardelis MR, Wilkerson RC, 2001. Aedes (Finlaya) japonicus (Diptera: Culicidae), a newly recognized mosquito in the United States: analyses of genetic variation in the United States and putative source populations. J Med Entomol 38 :135–146.

    • Search Google Scholar
    • Export Citation
  • 40

    Fonseca DM, Atkinson CT, Fleischer RC, 1998. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7 :1617–1619.

    • Search Google Scholar
    • Export Citation
  • 41

    Rozen S, Skaletsky HJ, 2000. Primer 3 on the WWW for general users and for biologist programmers. Krawetz S. MS, ed. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press, 365–386.

  • 42

    Raymond M, Rousset F, 1995. Genepop (version1.2): population-genetics software for exact tests and ecumenicism. J Heredity 86 :248–249.

  • 43

    Huber K, Mousson L, Rodhain F, Failloux AB, 1999. Short report: microsatellite sequences as markers for population genetic studies of the mosquito Aedes aegypti, the vector of dengue viruses. Am J Trop Med Hyg 61 :1001–1003.

    • Search Google Scholar
    • Export Citation
  • 44

    Barbazan P, Dardaine J, Gonzalez JP, Phuangkoson N, Cuny G, 1999. Characterization of three microsatellite loci for Aedes aegypti (Diptera: Culicidae) and their use for population genetic study. Southeast Asian J Trop Med Public Health 30 :482–483.

    • Search Google Scholar
    • Export Citation
  • 45

    Ravel S, Herve JP, Diarrassouba S, Kone A, Cuny G, 2002. Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from Cote d’Ivoire: evidence for a microgeographic genetic differentiation of mosquitoes from Bouake. Acta Trop 82 :39–49.

    • Search Google Scholar
    • Export Citation
  • 46

    Huber K, Loan LL, Hoang TH, Tien TK, Rodhain F, Failloux AB, 2002. Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam). Heredity 89 :7–14.

    • Search Google Scholar
    • Export Citation
  • 47

    Paupy C, Chantha N, Huber K, Lecoz N, Reynes JM, Rodhain F, Failloux AB, 2004. Influence of breeding sites features on genetic differentiation of Aedes aegypti populations analyzed on a local scale in Phnom Penh Municipality of Cambodia. Am J Trop Med Hyg 71 :73–81.

    • Search Google Scholar
    • Export Citation
  • 48

    Severson DW, Knudson DL, Soares MB, Loftus BJ, 2004. Aedes aegypti genomics. Insect Biochem Mol Biol 34 :715–721.

  • 49

    Behbahani A, Dutton TJ, Raju AK, Townson H, Sinkins SP, 2004. Polymorphic microsatellite loci in the mosquito Aedes polynesiensis. Molecular Ecology Notes 4 :59–61.

    • Search Google Scholar
    • Export Citation
  • 50

    Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P, 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87 :651–701.

    • Search Google Scholar
    • Export Citation
  • 51

    Primmer CR, Moller AP, Ellegren H, 1996. A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5 :365–378.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

FINDING NEEDLES IN THE HAYSTACK: SINGLE COPY MICROSATELLITE LOCI FOR AEDES JAPONICUS (DIPTERA: CULICIDAE)

View More View Less
  • 1 Molecular Ecology, PCER, Academy of Natural Sciences, Philadelphia, Pennsylvania; Department of Entomology, Rutgers University, New Brunswick, New Jersey; Wadsworth Center, New York State Department of Health, Slingerlands, New York

First identified in three North American states in 1998, Aedes japonicus japonicus, the Asian bush mosquito, has since spread to 21 states, plus Ontario in Canada, northern France, and Belgium. Analyses of the introduction and expansion of this potentially deadly disease vector will be radically improved by including powerful genetic markers like microsatellites. Useful microsatellite loci have, however, been difficult to identify for mosquitoes in the genus Aedes because of the high amount of repetitive DNA in these species. We isolated single-copy DNA from Ae. j. japonicus and then used a standard enrichment method to identify regions containing microsatellites. Here we describe seven polymorphic microsatellite loci that were tested in American populations of Ae. j. japonicus. These loci were also found to be polymorphic in two other of the four Ae. japonicus subspecies and in Aedes koreicus.

Author Notes

Reprint requests: Dina M. Fonseca, Academy of Natural Sciences, 1900 Ben Franklin Parkway, Philadelphia, PA 19103, Telephone: 215-299-1177, Fax: 215-299-1182, E-mail: fonseca@acnatsci.org.
Save