• 1

    Rao CK, Ramaprasad K, Narasimham MV, Jaggi OP, 1981. Epidemiology of bancroftian filariasis in East Godavari district (Andhra Pradesh)—incidence of tropical pulmonary eosinophilia. Indian J Med Res 74 :517–523.

    • Search Google Scholar
    • Export Citation
  • 2

    Choi EH, Zimmerman PA, Foster CB, Zhu S, Kumaraswami V, Nutman TB, Chanock SJ, 2001. Genetic polymorphisms in molecules of innate immunity and susceptibility to infection with Wuchereria bancrofti in South India. Genes Immun 2 :248–253.

    • Search Google Scholar
    • Export Citation
  • 3

    Ottesen EA, Neva FA, Paranjape RS, Tripathy SP, Thiruvengadam KV, Beaven MA, 1979. Specific allergic sensitisation to filarial antigens in tropical eosinophilia syndrome. Lancet 1 :1158–1161.

    • Search Google Scholar
    • Export Citation
  • 4

    Nutman TB, Vijayan VK, Pinkston P, Kumaraswami V, Steel C, Crystal RG, Ottesen EA, 1989. Tropical pulmonary eosinophilia: analysis of antifilarial antibody localized to the lung. J Infect Dis 160 :1042–1050.

    • Search Google Scholar
    • Export Citation
  • 5

    Mahanty S, King CL, Kumaraswami V, Regunathan J, Maya A, Jayaraman K, Abrams JS, Ottesen EA, Nutman TB, 1993. IL-4- and IL-5-secreting lymphocyte populations are preferentially stimulated by parasite-derived antigens in human tissue invasive nematode infections. J Immunol 151 :3704–3711.

    • Search Google Scholar
    • Export Citation
  • 6

    Pinkston P, Vijayan VK, Nutman TB, Rom WN, O’Donnell KM, Cornelius MJ, Kumaraswami V, Ferrans VJ, Takemura T, Yenokida G, Thiruvengadam KV, Tripathy SP, Ottesen EA, Crystal RG, 1987. Acute tropical pulmonary eosinophilia. Characterization of the lower respiratory tract inflammation and its response to therapy. J Clin Invest 80 :216–225.

    • Search Google Scholar
    • Export Citation
  • 7

    O’Bryan L, Pinkston P, Kumaraswami V, Vijayan V, Yenokida G, Rosenberg HF, Crystal G, Ottesen EA, Nutman TB, 2003. Localized eosinophil degranulation mediates disease in tropical pulmonary eosinophilia. Infect Immun 71 :1337–1342.

    • Search Google Scholar
    • Export Citation
  • 8

    Hamann KJ, Ten RM, Loegering DA, Jenkins RB, Heise MT, Schad CR, Pease LR, Gleich GJ, Barker RL, 1990. Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics 7 :535–546.

    • Search Google Scholar
    • Export Citation
  • 9

    Ackerman SJ, Loegering DA, Venge P, Oslsson I, Harley JB, Fauci AS, Gleich GJ, 1983. Distinctive cationic proteins of the human eosinophil granule: major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin. J Immunol 131 :2977–2982.

    • Search Google Scholar
    • Export Citation
  • 10

    Rosenberg HF, Domachowske JB, 1999. Eosinophils, ribonucleases and host defense: solving the puzzle. Immunol Res 20 :261–274.

  • 11

    Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ, 1986. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci USA 83 :3146–3150.

    • Search Google Scholar
    • Export Citation
  • 12

    Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF, 1998. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177 :1458–1464.

    • Search Google Scholar
    • Export Citation
  • 13

    Lee-Huang S, Huang PL, Sun Y, Kung HF, Blithe DL, Chen HC, 1999. Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci USA 96 :2678–2681.

    • Search Google Scholar
    • Export Citation
  • 14

    Young JD, Peterson CG, Venge P, Cohn ZA, 1986. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321 :613–616.

    • Search Google Scholar
    • Export Citation
  • 15

    Waters LS, Taverne J, Tai PC, Spry CJ, Targett GA, Playfair JH, 1987. Killing of Plasmodium falciparum by eosinophil secretory products. Infect Immun 55 :877–881.

    • Search Google Scholar
    • Export Citation
  • 16

    Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ, 1989. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142 :4428–4434.

    • Search Google Scholar
    • Export Citation
  • 17

    Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL, 1990. In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144 :3166–3173.

    • Search Google Scholar
    • Export Citation
  • 18

    Venge P, Bystrom J, 1998. Eosinophil cationic protein (ECP). Int J Biochem Cell Biol 30 :433–437.

  • 19

    Zhang J, Rosenberg HF, 2000. Sequence variation at two eosinophil-associated ribonuclease loci in humans. Genetics 156 :1949–1958.

  • 20

    Jonsson UB, Bystrom J, Stalenheim G, Venge P, 2002. Polymorphism of the eosinophil cationic protein-gene is related to the expression of allergic symptoms. Clin Exp Allergy 32 :1092–1095.

    • Search Google Scholar
    • Export Citation
  • 21

    Noguchi E, Iwama A, Takeda K, Takeda T, Kamioka M, Ichikawa K, Akiba T, Arinami T, Shibasaki M, 2003. The promoter polymorphism in the eosinophil cationic protein gene and its influence on the serum eosinophil cationic protein level. Am J Respir Crit Care Med 167 :180–184.

    • Search Google Scholar
    • Export Citation
  • 22

    Moore D, 1998. Preparation and analysis of DNA. Current Protocols in Human Genetics. New York: John Wiley & Sons, Inc., 2.1.1–2.1.3.

  • 23

    Stephens M, Smith NJ, Donnelly P, 2001. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68 :978–989.

    • Search Google Scholar
    • Export Citation
  • 24

    Sham PC, Curtis D, 1995. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59 :97–105.

    • Search Google Scholar
    • Export Citation
  • 25

    Cooray JH, Ismail MM, 1999. Re-examination of the diagnostic criteria of tropical pulmonary eosinophilia. Respir Med 93 :655–659.

  • 26

    Beg MA, Naqvi A, Zaman V, Hussain R, 2001. Tropical pulmonary eosinophilia and filariasis in Pakistan. Southeast Asian J Trop Med Public Health 32 :73–75.

    • Search Google Scholar
    • Export Citation
  • 27

    Coutinho A, 1956. Tropical eosinophilia: clinical, therapeutic and etiologic considerations. Experimental work. Ann Intern Med 44 :88–104.

    • Search Google Scholar
    • Export Citation
  • 28

    Hise AG, Hazlett FE, Bockarie MJ, Zimmerman PA, Tisch DJ, Kazura JW, 2003. Polymorphisms of innate immunity genes and susceptibility to lymphatic filariasis. Genes Immun 4 :524–527.

    • Search Google Scholar
    • Export Citation
  • 29

    Meyer CG, Gallin M, Erttmann KD, Brattig N, Schnittger L, Gelhaus A, Tannich E, Begovich AB, Erlich HA, Horstmann RD, 1994. HLA-D alleles associated with generalized disease, localized disease, and putative immunity in Onchocerca volvulus infection. Proc Natl Acad Sci USA 91 :7515–7519.

    • Search Google Scholar
    • Export Citation
  • 30

    Meyer CG, Schnittger L, May J, 1996. Met-11 of HLA class II DP α1 first domain associated with onchocerciasis. Exp Clin Immunogenet 13 :12–19.

    • Search Google Scholar
    • Export Citation
  • 31

    Murdoch ME, Payton A, Abiose A, Thomson W, Panicker VK, Dyer PA, Jones BR, Maizels RM, Ollier WE, 1997. HLA-DQ alleles associate with cutaneous features of onchocerciasis. The Kaduna-London-Manchester Collaboration for Research on Onchocerciasis. Hum Immunol 55 :46–52.

    • Search Google Scholar
    • Export Citation
  • 32

    Hoerauf A, Kruse S, Brattig NW, Heinzmann A, Mueller-Myhsok B, Deichmann KA, 2002. The variant Arg110Gln of human IL-13 is associated with an immunologically hyper-reactive form of onchocerciasis (Sowda). Microbes Infect 4 :37–42.

    • Search Google Scholar
    • Export Citation
  • 33

    Udwadia FE, 1967. Tropical eosinophilia. A correlation of clinical, histopathologic and lung function studies. Dis Chest 52 :531–538.

  • 34

    Liu X, Nickel R, Beyer K, Wahn U, Ehrlich E, Freidhoff LR, Bjorksten B, Beaty TH, Huang SK, 2000. An IL-13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90). J Allergy Clin Immunol 106 :167–170.

    • Search Google Scholar
    • Export Citation
  • 35

    Graves PE, Kabesch M, Halonen M, Holberg CJ, Baldini M, Fritzsch C, Weiland SK, Erickson RP, von Mutius E, Martinez FD, 2000. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 105 :506–513.

    • Search Google Scholar
    • Export Citation
  • 36

    Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K, Umeshita R, Abe Y, Braun S, Yamashita T, Roberts MH, Sugimoto R, Arima K, Arinobu Y, Yu B, Kruse S, Enomoto T, Dake Y, Kawai M, Shimazu S, Sasaki S, Adra CN, Kitaichi M, Inoue H, Yamauchi K, Tomichi N, Kurimoto G, Hamasaki N, Hopkin JM, Izuhara K, Shirakawa T, Dichmann KA, 2000. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 9 :549–559.

    • Search Google Scholar
    • Export Citation
  • 37

    Lin YC, Lu CC, Su HJ, Shen CY, Lei HY, Guo YL, 2002. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy 57 :831–834.

    • Search Google Scholar
    • Export Citation
  • 38

    Risma KA, Wang N, Andrews RP, Cunningham CM, Ericksen MB, Bernstein JA, Chakraborty R, Hershey GK, 2002. V75R576 IL-4 receptor á is associated with allergic asthma and enhanced IL-4 receptor function. J Immunol 169 :1604–1610.

    • Search Google Scholar
    • Export Citation
  • 39

    van Eerdewegh P, Little RD, Dupuis J, del Mastro RG, Galls K, Simon J, Torrey D, Pandit S, McKenney J, Braunschweiger K, Walsh A, Liu Z, Hayward B, Folz C, Manning SP, Bawa A, Saracino L, Thackston M, Benchekroun Y, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Rorke S, Clough JB, Holloway JW, Holgate ST, Keith TP, 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418 :426–430.

    • Search Google Scholar
    • Export Citation
  • 40

    Lobos E, Zahn R, Weiss N, Nutman TB, 1996. A major allergen of lymphatic filarial nematodes is a parasite homolog of the γ-glutamyl transpeptidase. Mol Med 2 :712–724.

    • Search Google Scholar
    • Export Citation
  • 41

    Gounni AS, Spanel-Borowski K, Palacios M, Heusser C, Moncada S, Lobos E, 2001. Pulmonary inflammation induced by a recombinant Brugia malayi γ-glutamyl transpeptidase homolog: involvement of humoral autoimmune responses. Mol Med 7 :344–354.

    • Search Google Scholar
    • Export Citation
  • 42

    Pugin J, Heumann ID, Tomasz A, Kraychenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ, 1994. CD14 is a pattern recognition receptor. Immunity 1 :509–516.

    • Search Google Scholar
    • Export Citation
  • 43

    Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF, 1991. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5 :2652–2660.

    • Search Google Scholar
    • Export Citation
  • 44

    Narayanan K, Seufzer BJ, Brockman-Schneider RA, Gern JE, Balakrishnan A, Miyamoto S, 2002. CD14-dependent activation of NF-κB by filarial parasitic sheath proteins. Cell Biol Int 26 :43–54.

    • Search Google Scholar
    • Export Citation
  • 45

    Kivisild T, Rootsi S, Metspalu M, Sdysms D, Kaldma K, Parik J, Metspaul E, Adojaan M, Tolk HV, Stepanov V, Golge M, Usanga E, Papiha SS, Cinnioglu C, King R, Cavalli-Sforza L, Underhill PA, Villems R, 2003. The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations. Am J Hum Genet 72 :313–332.

    • Search Google Scholar
    • Export Citation
  • 46

    Bamshad M, Kivisild T, Watkins WS, Dixon ME, Ricker CE, Rao BB, Naidu JM, Prasad BV, Reddy PG, Rasanayagam A, Papiha SS, Villems R, Redd AJ, Hammer MF, Nguyen SV, Carroll ML, Batzer MA, Jorde LB, 2001. Genetic evidence on the origins of Indian caste populations. Genome Res 11 :994–1004.

    • Search Google Scholar
    • Export Citation
  • 47

    Majumder PP, Dey B, 2001. Absence of the HIV-1 protective Δccr5 allele in most ethnic populations of India. Eur J Hum Genet 9 :794–796.

    • Search Google Scholar
    • Export Citation
  • 48

    Tosh K, Meisner S, Siddiqui MR, Balakrishnan K, Ghei S, Golding M, Sengupta U, Pitchappan RM, Hill AV, 2002. A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population. J Infect Dis 186 :1190–1193.

    • Search Google Scholar
    • Export Citation
  • 49

    Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM, 1997. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3 :23–36.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

GENETIC POLYMORPHISMS OF EOSINOPHIL-DERIVED NEUROTOXIN AND EOSINOPHIL CATIONIC PROTEIN IN TROPICAL PULMONARY EOSINOPHILIA

View More View Less
  • 1 Helminth Immunology Section, Laboratory of Parasitic Diseases, Laboratory of Malaria and Vector Research, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; Tuberculosis Research Centre, Chennai, India; Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea; Division of Geographic Medicine, Department of Medicine, Case Western Reserve University, University Hospitals of Cleveland, School of Medicine, Cleveland, Ohio

Because eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP) are critical in the pathogenesis of tropical pulmonary eosinophilia (TPE), we analyzed genetic polymorphisms of both in 181 individuals from southern India with varying clinical manifestations of Wuchereria bancrofti infection (including 26 with TPE). Using haplotype frequency analysis, we identified four known (of nine) and two novel haplotypes for EDN (1, 2, 7, 8, 10, and 11). For ECP, five (of seven known) haplotypes (1–5) were identified. Although we found no significant association between frequencies of EDN and ECP polymorphisms and TPE development, we observed a unique pattern of EDN and ECP polymorphism distribution among this population. Genotype TT at locus 1088 of ECP in one TPE patient was not observed in any other clinical group. Although the EDN and ECP polymorphisms appear unlikely to be associated with the development of TPE, further analyses will be more definitive.

Save