PHYLOGEOGRAPHY AND POPULATION STRUCURE OF AEDES AEGYPTI IN ARIZONA

SAMUEL A. MERRILL Department of Entomology and Center for Insect Science, University of Arizona, Tucson, Arizona

Search for other papers by SAMUEL A. MERRILL in
Current site
Google Scholar
PubMed
Close
,
FRANK B. RAMBERG Department of Entomology and Center for Insect Science, University of Arizona, Tucson, Arizona

Search for other papers by FRANK B. RAMBERG in
Current site
Google Scholar
PubMed
Close
, and
HENRY H. HAGEDORN Department of Entomology and Center for Insect Science, University of Arizona, Tucson, Arizona

Search for other papers by HENRY H. HAGEDORN in
Current site
Google Scholar
PubMed
Close
Restricted access

Aedes aegypti, the mosquito responsible for transmitting dengue, has colonized many cities and towns throughout Arizona. Determining both the migration between, and the origin of, local Ae. aegypti populations is important for vector control and disease prevention purposes. Amplified fragment length polymorphism was used to infer geographic structure and local substructure, and effective migration rates (M, migrants per generation) between populations, and to determine genetic differentiation between populations (ΦPT). Three geographically and genetically differentiated groups of populations were identified. Population substructure was only detected in the border town of Nogales. Reliable estimates of M between regions ranged from 1.02 to 3.41 and between cities within regions from 1.66 to 4.44. In general, pairwise ΦPT were lowest between cities within regions. The observed patterns of genetic differentiation suggest infrequent migration between populations and are compatible with the idea of human transport facilitating dispersal between regions.

Author Notes

  • 1

    CDC, 1989. Current trends: imported dengue. MMWR Morb Mortal Wkly Rep 38 :463–465.

  • 2

    Gubler DJ, 1997. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. Gubler DJ, Kino G, eds. Dengue and Dengue Hemorrhagic Fever. New York: CAB International, 1–23.

    • PubMed
    • Export Citation
  • 3

    Yan G, Chadee DD, Severson DW, 1998. Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti. Genetics 148 :793–800.

  • 4

    Tabachnick WJ, Black WC IV, 1996. Population genetics in vector biology. Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Niwot, CO: University Press of Colorado, 417–437.

    • PubMed
    • Export Citation
  • 5

    Bequaert J, 1946. Aedes aegypti, the yellow fever mosquito, in Arizona. Bull Brooklyn Entomol Soc 41 :157.

  • 6

    Murphy D, 1953. Collection records of some Arizona mosquitoes. Entomol News 14 :233–238.

  • 7

    Engelthaler DM, Fink TM, Levy CE, Leslie MJ, 1997. The re-emergence of Aedes aegypti in Arizona. Emerg Infect Dis 3 :241–242.

  • 8

    Fink TM, Hau B, Baird BL, Palmer S, Kaplan S, Ramberg FB, Mead DG, Hagedorn H, 1998. Aedes aegypti in Tucson, Arizona. Emerg Infect Dis 4 :703–704.

  • 9

    Kuno G, 1997. Factors influencing the transmission of dengue viruses. Gubler DJ, Kino G, eds. Dengue and Dengue Hemorrhagic Fever. New York, NY: CAB International, 61–88.

    • PubMed
    • Export Citation
  • 10

    CDC, 1996. Dengue fever at the U.S.-Mexico border. MMWR Morb Mortal Wkly Rep 45 :841–844.

  • 11

    Joshi V, Mourya DT, Sharma RC, 2002. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am J Trop Med Hyg 67 :158–161.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Mourya DT, Gokhale MD, Basu A, Barde PV, Sapkal GN, Padbidri VS, Gore MM, 2001. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Acta Virol 45 :67–71.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Black WC IV, Bennett KE, Gorrochoteguli-Escalante N, Barillas-Mury C, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, Olson KE, Beaty BJ, 2002. Flavivirus susceptibility in Aedes aegypti. Arch Med Res 33 :379–388.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC IV, Beaty BJ, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67 :85–92.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66 :213–222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Hoeck PAE, Ramberg FB, Merrill SA, Moll C, Hagedorn HH, 2003. Population and parity levels of Aedes aegypti collected in Tucson. J Vector Ecol 28 :1–9.

  • 17

    Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23 :4407–4414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Parsons YM, Shaw KL, 2001. Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Mol Ecol 10 :1765–1772.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Mueller UG, Wolfenbarger LL, 1999. AFLP genotyping and fingerprinting. Trends Ecol Evol 14 :389–394.

  • 20

    Waugh R, Bonar N, Thomas B, Graner TA, 1997. Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255 :311–321.

  • 21

    Yan G, Romero-Severson J, Walton M, Chadee DD, Severson DW, 1999. Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. Mol Ecol 8 :951–963.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Fagerberg AJ, Fulton RE, Black WC, 2001. Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 10 :225–236.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Ravel S, Herve JP, Diarrassouba S, Kone A, Cuny G, 2002. Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from Cote d’Ivoire: evidence for a microgeographic genetic differentiation of mosquitoes from Bouake. Acta Trop 82 :39–42.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Huber K, Mousson L, Rodhain F, Failloux AB, 2001. Isolation and variability of polymorphic microsatellite loci in Aedes aegypti, the vector of dengue viruses. Mol Ecol Notes 1 :219–222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Savelkoul PHM, Aarts HJM, de Haas J, Dijkshoorn L, Duim B, Otsen M, Rademaker JLW, Schouls L, Lenstra JA, 1999. Amplified fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37 :3083–3091.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Black WC, 1993. PCR with arbitrary primers: approach with care. Insect Mol Biol 2 :1–6.

  • 27

    Gorrochoteguli-Escalante N, de Lourdes Munoz M, Fernandez-Salas I, Beaty BJ, Black WC IV, 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 62 :200–209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Wright S, 1951. The genetical structure of populations. Ann Eugen 15 :323–354.

  • 29

    Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 :470–491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Weir BS, Hill WG, 2002. Estimating F-statistics. Annu Rev Genet 36 :721–750.

  • 31

    Slatkin M, 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47 :264–279.

  • 32

    Goldberg CS, Kaplan ME, Schwalbe CR, 2003. From the frog’s mouth: buccal swabs for collection of DNA from amphibians. Herpetol Rev 34 :220–221.

  • 33

    Swofford DL, 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland, MA: Sinauer Associates.

    • PubMed
    • Export Citation
  • 34

    Maheswaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N, 1997. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94 :39–45.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Peakall R, Smouse PE, 2001. GenAlEx V5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Canberra: Australian National University. http://www.anu.edu.au/BoZo/GenAlEx/

    • PubMed
    • Export Citation
  • 36

    Hartl DL, 2000. A Primer of Population Genetics. Third edition. Sunderland, MA: Sinauer Associates, Inc., 69–70.

    • PubMed
    • Export Citation
  • 37

    Whitlock MC, McCauley DE, 1999. Indirect measures of gene flow and migration: FST ≠ 1/(4Nm+1). Heredity 82 :117–125.

  • 38

    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9 :86–89.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 358 283 6
Full Text Views 250 4 0
PDF Downloads 59 7 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save