DETECTION AND IDENTIFICATION OF LEISHMANIA SPECIES WITHIN NATURALLY INFECTED SAND FLIES IN THE ANDEAN AREAS OF ECUADOR BY A POLYMERASE CHAIN REACTION

HIROTOMO KATO Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by HIROTOMO KATO in
Current site
Google Scholar
PubMed
Close
,
HIROSHI UEZATO Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by HIROSHI UEZATO in
Current site
Google Scholar
PubMed
Close
,
KEN KATAKURA Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by KEN KATAKURA in
Current site
Google Scholar
PubMed
Close
,
MANUEL CALVOPIÑA Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by MANUEL CALVOPIÑA in
Current site
Google Scholar
PubMed
Close
,
JORGE D. MARCO Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by JORGE D. MARCO in
Current site
Google Scholar
PubMed
Close
,
PAOLA A. BARROSO Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by PAOLA A. BARROSO in
Current site
Google Scholar
PubMed
Close
,
EDUARDO A. GOMEZ Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by EDUARDO A. GOMEZ in
Current site
Google Scholar
PubMed
Close
,
TATSUYUKI MIMORI Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by TATSUYUKI MIMORI in
Current site
Google Scholar
PubMed
Close
,
MASATAKA KORENAGA Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by MASATAKA KORENAGA in
Current site
Google Scholar
PubMed
Close
,
HIROYUKI IWATA Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by HIROYUKI IWATA in
Current site
Google Scholar
PubMed
Close
,
SHIGEO NONAKA Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by SHIGEO NONAKA in
Current site
Google Scholar
PubMed
Close
, and
YOSHIHISA HASHIGUCHI Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan; Department of Dermatology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan; Departamento de Medicina Tropical, Facultad de Medicina, Universidad Catolica de Guayaquil, Guayaquil, Ecuador; Department of Tumor Genetics and Biology, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan

Search for other papers by YOSHIHISA HASHIGUCHI in
Current site
Google Scholar
PubMed
Close
Restricted access

The surveillance of prevalent Leishmania and sand fly species in endemic areas is important for prediction of the risk and expansion of leishmaniasis. In this study, we developed a polymerase chain reaction (PCR)-based method for detection of Leishmania minicircle DNA within individual sand flies. Using this method, we detected minicircle DNA in 6 (3.3%) of 183 sand flies, while 5 (3.5%) of 143 were positive for Leishmania promastigotes in the same areas by microscopic examination. The species were identified as Leishmania (Leishmania) mexicana by nucleotide sequencing of the cytochrome b gene. Additionally, all the Leishmania-positive sand flies were identified as Lutzomyia ayacuchensis by the restriction enzyme digestion of the PCR-amplified 18S ribosomal RNA gene fragments. Since this combined method is relatively easy and can process a large number of samples, it will be a powerful tool for the rapid identification of prevalent sand fly and Leishmania species as well as monitoring the infection rate in sand fly populations in endemic areas.

Author Notes

Reprint requests: Hirotomo Kato, Department of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan Telephone: 81-83-933-5900, Fax: 81-83-933-5899, E-mail: katoh@yamaguchi-u.ac.jp.
  • 1

    Desjeux P, 1996. Leishmaniasis. Public health aspects and control. Clin Dermatol 14 :417–423.

  • 2

    Choi CM, Lerner EA, 2001. Leishmaniasis as an emerging infection. J Invest Dermatol Symp Proc 6 :175–182.

  • 3

    Killick-Kendrick R, 1999. The biology and control of phlebotomine sand flies. Clin Dermatol 17 :279–289.

  • 4

    Kreutzer RD, Souraty N, Semko ME, 1987. Biochemical identities and differences among Leishmania species and subspecies. Am J Trop Med Hyg 36 :22–32.

  • 5

    Grimaldi G Jr, David JR, McMahon-Pratt D, 1987. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies. Am J Trop Med Hyg 36 :270–287.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Mimori T, Grimaldi G Jr, Kreutzer RD, Gomez EA, McMahon-Pratt D, Tesh RB, Hashiguchi Y, 1989. Identification, using isoenzyme electrophoresis and monoclonal antibodies, of Leishmania isolated from humans and wild animals of Ecuador. Am J Trop Med Hyg 40 :154–158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Barker DC, 1989. Molecular approaches to DNA diagnosis. Parasitology 99 :S125–S146.

  • 8

    Katakura K, Matsumoto Y, Gomez EA, Furuya M, Hashiguchi Y, 1993. Molecular karyotype characterization of Leishmania panamensis, Leishmania mexicana, and Leishmania major-like parasites: agents of cutaneous leishmaniasis in Ecuador. Am J Trop Med Hyg 48 :707–715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    de Brujin MH, Labrada LA, Smyth AJ, Santrich C, Barker DC, 1993. A comparative study of diagnosis by the polymerase chain reaction and by current clinical methods using biopsies from Colombian patients with suspected leishmaniasis. Trop Med Parasitol 44 :201–207.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Ashford DA, Bozza M, Freire M, Miranda JC, Sherlock I, Eulalio C, Lopes U, Fernandes O, Degrave W, Barker RH Jr, Badaró R, David JR, 1995. Comparison of the polymerase chain reaction and serology for the detection of canine visceral leishmaniasis. Am J Trop Med Hyg 53 :251–255.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Laskay T, Miko TL, Negesse Y, Solbach W, Rollinghoff M, Frommel D, 1995. Detection of cutaneous Leishmania infection in paraffin-embedded skin biopsies using the polymerase chain reaction. Trans R Soc Trop Med Hyg 89 :273–275.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Mathis A, Deplazes P, 1995. PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs. J Clin Microbiol 33 :1145–1149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Andresen K, Gaafar A, El-Hassan AM, Ismail A, Dafalla M, Theander TG, Kharazmi A, 1996. Evaluation of the polymerase chain reaction in the diagnosis of cutaneous leishmaniasis due to Leishmania major: a comparison with direct microscopy of smears and sections from lesions. Trans R Soc Trop Med Hyg 90 :133–135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Mimori T, Sasaki J, Nakata M, Gomez EA, Uezato H, Nonaka S, Hashiguchi Y, Furuya M, Saya H, 1998. Rapid identification of Leishmania species from formalin-fixed biopsy samples by polymorphism-specific polymerase chain reaction. Gene 210 :179–186.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Uezato H, Hagiwara K, Hosokawa A, Maruno M, Nonaka S, Oshiro M, Furuya M, Gomez EA, Hashiguchi Y, 1998. A preliminary study aimed at the detection of Leishmania parasites in subjects with cutaneous leishmaniasis using polymerase chain reaction. J Dermatol 25 :290–298.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Uezato H, Hagiwara K, Hosokawa A, Maruno M, Nonaka S, Oshiro M, Nakashima Y, Furuya M, Hashiguchi Y, 1998. Comparative studies of the detection rates of Leishmania parasites from formalin, ethanol-fixed, frozen human skin specimens by polymerase chain reaction and Southern blotting. J Dermatol 25 :623–631.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Katakura K, Kawazu SI, Sanjyoba C, Naya T, Matsumoto Y, Ito M, Nagakura K, Aikawa M, Hashiguchi Y, 1998. Leishmania mini-exon genes for molecular epidemiology of leishmaniasis in China and Ecuador. Tokai J Exp Clin Med 23 :393–399.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Matsumoto T, Hashiguchi Y, Gomez EA, Calvopiña MH, Nonaka S, Saya H, Mimori T, 1999. Comparison of PCR results using scrape/exudate, syringe-sucked fluid and biopsy samples for diagnosis of cutaneous leishmaniasis in Ecuador. Trans R Soc Trop Med Hyg 93 :606–607.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Breniere SF, Telleria J, Bosseno MF, Buitrago R, Bastrenta B, Cuny G, Banuls AL, Brewster S, Barker DC, 1999. Polymerase chain reaction-based identification of New World Leishmania species complexes by specific kDNA probes. Acta Trop 73 :283–293.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Reithinger R, Lambson BE, Barker DC, Davies CR, 2000. Use of PCR to detect Leishmania (Viannia) spp. in dog blood and bone marrow. J Clin Microbiol 38 :748–751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Reithinger R, Quinnell RJ, Alexander B, Davies CR, 2002. Rapid detection of Leishmania infantum infection in dogs: comparative study using an immunochromatographic dipstick test, enzyme-linked immunosorbent assay, and PCR. J Clin Microbiol 40 :2352–2356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Mimori T, Matsumoto T, Calvopiña MH, Gomez EA, Saya H, Katakura K, Nonaka S, Shamsuzzaman SM, Hashiguchi Y, 2002. Usefulness of sampling with cotton swab for PCR-diagnosis of cutaneous leishmaniasis in the New World. Acta Trop 81 :197–202.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Aransay AM, Scoulica E, Tselentis Y, 2000. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplast DNA. Appl Environ Microbiol 66 :1933–1938.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Hashiguchi Y, Gomez EA, de Coronel VV, Mimori T, Kawabata M, 1985. Leishmania isolated from wild mammals caught in endemic areas of leishmaniasis in Ecuador. Trans R Soc Trop Med Hyg 79 :120–121.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Hashiguchi Y, Gomez EA, de Coronel VV, Mimori T, Kawabata M, 1985. Natural infections with promastigotes in man-biting species of sand flies in leishmaniasis-endemic areas of Ecuador. Am J Trop Med Hyg 34 :440–446.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Hashiguchi Y, Gomez EA, 1991. A review of leishmaniasis in Ecuador. Bull Pan Am Health Organ 25 :64–76.

  • 27

    Hashiguchi Y, 2003. Leishmaniasis. Otsuru M, Kamegai S, Hayashi S, eds. Progress of Medical Parasitology in Japan. Tokyo: Megro Parasitological Museum, 537–553.

    • PubMed
    • Export Citation
  • 28

    Takaoka H, Gomez EA, Alexander JB, Hashiguchi Y, 1990. Natural infections with Leishmania promastigotes in Lutzomyia ayacuchensis (Diptera: Psychodidae) in an Andean focus of Ecuador. J Med Entomol 27 :701–702.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Hashiguchi Y, Gomez EA, de Coronel VV, Mimori T, Kawabata M, Furuya M, Nonaka S, Takaoka H, Alexander JB, Quizhpe AM, Grimaldi G Jr, Kreutzer RD, Tesh RB, 1991. Andean leishmaniasis in Ecuador caused by infection with Leishmania mexicana and L. major-like parasites. Am J Trop Med Hyg 44 :205–217.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Gomez EA, Hashiguchi Y, 1991. Monthly variation in natural infection of the sandfly Lutzomyia ayacuchensis with Leishmania mexicana in an endemic focus in the Ecuadorian Andes. Ann Trop Med Parasitol 85 :407–411.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Luyo-Acero G, Uezato H, Oshiro M, Kariya K, Katakura K, Gomez EAL, Hashiguchi Y, Nonaka S, 2004. Sequence variation of the Cytochrome b gene of various human patholgenic members of the genus Leishmania: a new approach for their identification. Parasitology 128 :483–491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Aransay AM, Scoulica E, Chaniotis B, Tselentis Y, 1999. Typing of sandflies from Greece and Cyprus by DNA polymorphism of 18S rRNA gene. Insect Mol Biol 8 :179–184.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Aransay AM, Scoulica E, Tselentis Y, Ready PD, 2000b. Phylogenetic relationships of phlebotomine sandflies inferred from small subunit nuclear ribosomal DNA. Insect Mol Biol 9 :157–168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Rogers WO, Wirth DF, 1988. Generation of sequence diversity in the kinetoplast DNA minicircles of Leishmania mexicana amazonensis. Mol Biochem Parasitol 30 :1–8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Noyes HA, Reyburn H, Bailey JW, Smith D, 1998. A nested-PCR-based schizodeme method for identifying Leishmania kinetoplast minicircle classes directly from clinical samples and its application to the study of the epidemiology of Leishmania tropica in Pakistan. J Clin Microbiol 36 :2877–2881.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Brewster S, Barker DC, 2002. Analysis of minicircle classes in Leishmania (Viannia) species. Trans R Soc Trop Med Hyg 96 :S55–S63.

  • 37

    Simpson L, 1986. Kinetoplast DNA in trypanosomid flagellates. Int Rev Cytol 99 :119–179.

Past two years Past Year Past 30 Days
Abstract Views 1090 1011 44
Full Text Views 408 10 2
PDF Downloads 109 6 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save