• 1

    Guerin PJ, Olliaro P, Nosten F, Druilhe P, Laxminarayan R, Binka F, Kilama WL, Ford N, White NJ, 2002. Malaria: current status of control, diagnosis, treatment and a proposal agenda for research and development. Lancet Infect Dis 2 :564–573.

    • Search Google Scholar
    • Export Citation
  • 2

    Makler M, Palmer C, Ager A, 1998. A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol 92 :419–433.

  • 3

    Hanscheid T, 1999. Diagnosis of malaria: a review of alternatives to conventional microscopy. Clin Lab Haematol 21 :235–245.

  • 4

    Moody A, 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiology Rev 15 :66–78.

  • 5

    Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, Liebowitz L, Marshall L, Scott S, Coetzer T, 1999. Automated malaria detection by depolarization of laser light. Br J Haematol 104 :499–503.

    • Search Google Scholar
    • Export Citation
  • 6

    Scott CS, van Zyl D, Ho E, Meyersfeld D, Ruivo L, Mendelow BV, Coetzer TL, 2002. Automated detection of WBC intracellular malaria-associated pigment (hemozoin) with Abbott Cell-Dyn 3200 and Cell-Dyn 3700 analyzers: overview and results from the South African Institute for Medical Research (SAIMR) II Evaluation. Lab Hematol 8 :91–101.

    • Search Google Scholar
    • Export Citation
  • 7

    Forney JR, Magill AJ, Wongsrichanalai C, Sirichaisinthop J, Bautista CT, Heppner DG, Miller RS, Ockenhouse CF, Gubanov A, Shafer R, DeWitt CC, Quino-Ascurra HA, Kester KE, Kain KC, Walsh DS, Ballou WR, Gasser RA Jr, 2001. Malaria rapid diagnostic devices: performance characteristics of the ParaSight F device determined in a multisite field study. J Clin Microbiol 39 :2884–2890.

    • Search Google Scholar
    • Export Citation
  • 8

    Demirev PA, Feldman AB, Kongkasuriyachai D, Scholl P, Sullivan D Jr, Kumar N, 2002. Detection of malaria parasites by laser desorption mass spectrometry. Anal Chem 74 :3262–3266.

    • Search Google Scholar
    • Export Citation
  • 9

    Slater AF, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, Henderson GB, 1991. An iron-carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci USA 88 :325–329.

    • Search Google Scholar
    • Export Citation
  • 10

    Bohle D, Dinnebier R, Madsen S, Stephens P, 1997. Characterization of the products of the heme detoxification pathway in malarial late trophozoites by x-ray diffraction. J Biol Chem 272 :713–716.

    • Search Google Scholar
    • Export Citation
  • 11

    Pagola S, Stephens P, Bohle D, Kosar A, Madsen S, 2000. The structure of malaria pigment β-hematin. Nature 404 :307–310.

  • 12

    Bohle DS, Kosar AD, Madsen SK, 2002. Propionic acid side chain hydrogen bonding in the malaria pigment β-hematin. Biochem Biophys Res Comm 294 :132–135.

    • Search Google Scholar
    • Export Citation
  • 13

    Sullivan DJ, 2002. Hemozoin: a biocrystal synthesized during the degradation of hemoglobin. Int J Parasitology 32 :1645–1653.

  • 14

    Noland GS, Briones N, Sullivan DS, 2003. The shape and size of hemozoin crystals distinguishes diverse Plasmodium species. Mol Biochem Parasitol 130 :91–99.

    • Search Google Scholar
    • Export Citation
  • 15

    Egan TJ, 2002. Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. J Inorg Biochem 91 :19–26.

  • 16

    Quirke JM, 2000. Mass spectrometry of porphyrins and metal-loporphyrins. Kadish, KM, Smith KM, Guilard R, eds. The Porphyrin Handbook. San Diego: Academic Press 371–422.

  • 17

    Pandey A, Tekwani B, Pandey V, 1995. Characterization of hemozoin from liver and spleen of mice infected with Plasmodium yoelii, a rodent malaria parasite. Biomed Res 16 :115–120.

    • Search Google Scholar
    • Export Citation
  • 18

    Slater AF, Cerami A, 1992. Inihibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355 :167–169.

    • Search Google Scholar
    • Export Citation
  • 19

    Cornish T, Bryden W, 1999. Miniature time-of-flight mass spectrometer for a field-portable biodetection system. APL Tech Digest 20 :335–342. http://www.jhuapl.edu/techdigest/td2003/cornish.pdf

    • Search Google Scholar
    • Export Citation
  • 20

    Scholl PF, Leonardo MA, Rule A, Carlson M, Antoine M, Buckley T, 1999. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the detection of biological warfare agent aerosols. APL Tech Digest 20 :343–351. http://www.jhuapl.edu/digest/td2003/scholl.pdf

    • Search Google Scholar
    • Export Citation
  • 21

    Vigario AM, Belnoue E, Cumano A, Marussig M, Miltgen F, Landau I, Mazier D, Gresser I, Renia L, 2001. Inhibition of Plasmodium yoelii blood-stage malaria by interferon-α through the inhibition of production of its target cell, the reticulocyte. Blood 97 :3966–3971.

    • Search Google Scholar
    • Export Citation
  • 22

    Day NP, Pham TD, Phan TL, Dinh XS, Pham PL, Ly VC, Tran TH, Nguyen TH, Bethell DB, Nguyan HP, Tran TH, White NJ, 1996. Clearance kinetics of parasites and pigment containing leukocytes in severe malaria. Blood 88 :4694–4700.

    • Search Google Scholar
    • Export Citation
  • 23

    Chen MM, Shi L, Sullivan DJ, 2001. Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin. Mol Biochem Parasitol 113 :1–8.

    • Search Google Scholar
    • Export Citation
  • 24

    Janney SK, Joist JJ, Fitch CD, 1986. Excess release of ferriheme in G6PD-deficient erythrocytes: possible cause of hemolysis and resistance to malaria. Blood 67 :331–333.

    • Search Google Scholar
    • Export Citation
  • 25

    Aebersold R, Mann M, 2003. Mass-spectrometry based proteomics. Nature 13 :198–207.

  • 26

    Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, Eling WM, Hall N, Waters AP, Stunnenberg HG, Mann M, 2002. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419 :537–542.

    • Search Google Scholar
    • Export Citation
  • 27

    Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ, 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419 :520–526.

    • Search Google Scholar
    • Export Citation
  • 28

    Rabilloud T, Blisnick T, Heller M, Luche S, Aebersold R, Lunar-di J, Braun-Breton C, 1999. Analysis of membrane proteins by 2-dimensional electrophoresis: comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts. Electrophoresis 20 :3603–3610.

    • Search Google Scholar
    • Export Citation

 

 

 

 

RAPID DETECTION OF MALARIA INFECTION IN VIVO BY LASER DESORPTION MASS SPECTROMETRY

View More View Less
  • 1 M. S. Eisenhower Research and Technology Development Center, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland

Rapid diagnosis leading to effective treatment is essential to control escalating infectious diseases such as malaria. Malaria pigment (hemozoin) detection by laser desorption mass spectometry (LDMS) was recently shown to be a sensitive (<10 parasites/μL) technique for detecting Plasmodium falciparum parasites cultured in human blood. To examine the use of LDMS in a rapid new malaria screening assay, we followed the time course of P. yoelii infections in mice in parallel with light microscopy and a colorimetric hemozoin assay. Hemozoin was detected by LDMS in 0.3 μL of blood within two days of infection independently of the inoculating dose of 106, 104, or 102 parasite-infected erythrocytes. Microscopy and colorimetric hemozoin determinations lagged the LDMS detection of infections by 2–4 and 3–5 days, respectively, except at the highest inoculation dose. The LDMS detection of hemozoin is a potentially more rapid screen than light microscopy for detecting malaria infection in this mouse model at parasitemias <0.1%.

Save