GENETIC SUBSTRUCTURING WITHIN OESOPHAGOSTOMUM BIFURCUM (NEMATODA) FROM HUMAN AND NON-HUMAN PRIMATES FROM GHANA BASED ON RANDOM AMPLIFIED POLYMORPHIC DNA ANALYSIS

JOHANNA M. DE GRUIJTER Department of Parasitology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands; University for Development Studies, Tamale, Ghana; Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia

Search for other papers by JOHANNA M. DE GRUIJTER in
Current site
Google Scholar
PubMed
Close
,
JUVENTUS ZIEM Department of Parasitology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands; University for Development Studies, Tamale, Ghana; Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia

Search for other papers by JUVENTUS ZIEM in
Current site
Google Scholar
PubMed
Close
,
JACO J. VERWEIJ Department of Parasitology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands; University for Development Studies, Tamale, Ghana; Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia

Search for other papers by JACO J. VERWEIJ in
Current site
Google Scholar
PubMed
Close
,
ANTON M. POLDERMAN Department of Parasitology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands; University for Development Studies, Tamale, Ghana; Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia

Search for other papers by ANTON M. POLDERMAN in
Current site
Google Scholar
PubMed
Close
, and
ROBIN B. GASSER Department of Parasitology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands; University for Development Studies, Tamale, Ghana; Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia

Search for other papers by ROBIN B. GASSER in
Current site
Google Scholar
PubMed
Close
Restricted access

Random amplified polymorphic DNA (RAPD) was used to study genetic variation within Oesophagostomum bifurcum in Ghana. Four different decamer primers were used for the amplification of DNA from individual O. bifurcum adults (n = 41) from humans and non-human primates (including the Mona monkey, Patas monkey and Olive baboon) from different geographic regions. Analysis of the amplicons from all 41 nematodes by high resolution, denaturing polyacrylamide gel electrophoresis defined a total of 326 informative RAPD bands. Cluster analysis of the RAPD data (based on pairwise comparison of banding profiles) showed that O. bifurcum from humans was genetically distinct from O. bifurcum from the Mona and Patas monkeys, and from the Olive baboon. These findings clearly demonstrate the existence of population genetic substructuring within O. bifurcum from different primate hosts in Ghana, and raise interesting questions about host specificity, epidemiology (e.g., zoonotic transmission), and ecology of the different genotypes of O. bifurcum.

Author Notes

Reprint requests: Johanna M. de Gruijter, Department of Parasitology, Leiden University Medical Center, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands.
  • 1

    Polderman AM, Krepel HP, Baeta S, Blotkamp J, Gigase P, 1991. Oesophagostomiasis, a common infection of man in northern Togo and Ghana. Am J Trop Med Hyg 44 :336–344.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Polderman AM, Anemana SD, Asigri V, 1999. Human oesophagostomiasis: a regional public health problem in Africa. Parasitol Today 15 :129–130.

  • 3

    Gigase P, Baeta S, Kumar V, Brandt J, 1987. Frequency of symptomatic human oesophagostomiasis (helminthoma) in northern Togo. Geerts S, Kumar V, Brandt J, eds. Helminth Zoonosis. Dordrecht: Martinus Nijhoff, 233–236.

    • PubMed
    • Export Citation
  • 4

    Storey PA, Faile G, Hewitt E, Yelifari L, Polderman AM, Magnussen P, 2000. Clinical epidemiology and classification of human oesophagostomiasis. Trans R Soc Trop Med Hyg 94 :177–182.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Polderman AM, Blotkamp C, 1995. Oesophagostomum infections in humans. Parasitol Today 11 :451–460.

  • 6

    Stewart TB, Gasbarre LC, 1989. The veterinary importance of nodular worms (Oesophagostomum spp.). Parasitol Today 5 :209–213.

  • 7

    Blotkamp J, Krepel HP, Kumar V, Baeta S, Van ’t Noordende JM, Polderman AM, 1993. Observations on the morphology of adults and larval stages of Oesophagostomum sp. isolated from man in northern Togo and Ghana. J Helminthol 67 :49–61.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Gasser RB, Woods WG, Blotkamp C, Verweij J, Storey PA, Polderman AM, 1999. Screening for nucleotide variations in ribosomal DNA arrays of Oesophagostomum bifurcum by polymerase chain reaction-coupled single-strand conformation polymorphism. Electrophoresis 20 :1486–1491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    de Gruijter JM, Polderman AM, Zhu XQ, Gasser RB, 2002. Screening for haplotypic variability within Oesophagostomum bifurcum (Nematoda) employing a single-strand conformation polymorphism approach. Mol Cell Probes 16 :185–190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Welsh J, McClelland M, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18 :7213–7218.

  • 11

    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18 :6531–6535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Black WC IV, 1993. PCR with arbitrary primers: approach with care. Insect Mol Biol 2 :1–6.

  • 13

    Ellsworth DL, Rittenhouse KD, Honeycutt RL, 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14 :214–217.

  • 14

    Smith JJ, Scott-Craig JS, Leadbetter JR, Bush GL, Roberts DL, Fulbright DW, 1994. Characterization of random amplified polymorphic DNA (RAPD) products from Xanthomonas campestris and some comments on the use of RAPD products in phylogenetic analysis. Mol Phylogenet Evol 3 :135–145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Humbert JF, Cabaret J, 1995. Use of random amplified polymorphic DNA for identification of ruminant trichostrongylid nematodes. Parasitol Res 81 :1–5.

  • 16

    Leignel V, Humbert JF, Elard L, 1997. Study by ribosomal DNA ITS 2 sequencing and RAPD analysis on the systematics of four Metastrongylus species (Nematoda:Metastrongyloidea). J Parasitol 83 : 606–611.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Joachim A, Daugschies A, Christensen CM, Bjørn H, Nansen P, 1997. Use of random amplified polymorphic DNA-polymerase chain reaction for the definition of genetic markers for species and strains of porcine Oesophagostomum.Parasitol Res 83 :646–654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Gasser RB, Zhu XQ, Monti JR, Dou L, Cai X, Pozio E, 1998. PCR-SSCP of rDNA for the identification of Trichinella isolates from mainland China. Mol Cell Probes 12 :27–34.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Chabaud AG, Larivière M, 1958. Sur les oesophagostomes parasites de l’homme. Bull Soc Pathol Exot 51 :384–393.

  • 20

    Skrjabin KI, Shikhobalova NP, Schulz RS, Popova TI, Boev SN, Delyamure SL, 1952. Strongylata. Skrjabin KI, ed. Keys to Parasitic Nematodes. Volume 3. New York: E. J. Brill, 35–40.

    • PubMed
    • Export Citation
  • 21

    Gasser RB, Chilton NB, Hoste H, Beveridge I, 1993. Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Res 21 :2525–2526.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Verweij JJ, Polderman AM, Wimmenhove MC, Gasser RB, 2000. PCR assay for the specific amplification of Oesophagostomum bifurcum DNA from human faeces. Int J Parasitol 30 :137–142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Newton LA, Chilton NB, Beveridge I, Gasser RB, 1998. Systematic relationships of some members of the genera Oesophagostomum and Chabertia (Nematoda: Chabertiidae) based on ri-bosomal DNA sequence data. Int J Parasitol 28 :1781–1789.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Romstad A, Gasser RB, Monti JR, Polderman AM, Nansen P, Pit DS, Chilton NB, 1997. Differentiation of Oesophagostomum bifurcum from Necator americanus by PCR using genetic markers in spacer ribosomal DNA. Mol Cell Probes 11 :169–176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Zhu XQ, Gasser RB, 1998. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes. Electrophoresis 19 :1366–1373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Gasser RB, Woods WG, Huffman MA, Blotkamp J, Polderman AM, 1999. Molecular separation of Oesophagostomum stephanostomum and Oesophagostomum bifurcum (Nematoda: Strongyloidea) from non-human primates. Int J Parasitol 29 :1087–1091.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Pavlicek A, Hrda S, Flegr J, 1999. Free-Tree–freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia.Folia Biol (Praha) 45 :97–99.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Nei M, Li WH, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76 :5269–5273.

  • 29

    Anou N, Yanwen X, Youren F, 2002. Schistosoma japonicum strains: differentiation by RAPD and SSR-PCR. Southeast Asian J Trop Med Public Health 33 :720–724.

  • 30

    Claes F, Agbo EC, Radwanska M, te Pas MF, Baltz T, de Waal DT, Goddeeris BM, Claassen E, Buscher P, 2003. How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by RAPD and multiplex-endonuclease genotyping approach. Parasitology 126 :425–431.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Pradeep KN, Patra KP, Hoti SL, Das PK, 2002. Genetic variability of the human filarial parasite, Wuchereria bancrofti in south India. Acta Trop 82 :67–76.

  • 32

    Sedinova J, Flegr J, Ey PL, Kulda J, 2003. Use of random amplified polymorphic DNA (RAPD) analysis for the identification of Giardia intestinalis subtypes and phylogenetic tree construction. J Eukaryot Microbiol 50 :198–203.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Levi A, Rowland LJ, Hartung JS, 1993. Production of reliable random amplified polymorphic DNA (RAPD) markers from DNA of woody plants. HortScience 28 :1188–1190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    MacPherson JM, Eckstein PE, Scoles GJ, Gajadhar AA, 1993. Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. Mol Cell Probes 7 :293–299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Meunier JR, Grimont PAD, 1993. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol 144 :373–379.

  • 36

    Grundmann HJ, Towner KJ, Dijkshoorn L, Gerner-Smidt P, Maher M, Seifert H, Vaneechoutte M, 1997. Multicenter study using standardized protocols and reagents for evaluation of reproducibility of PCR-based fingerprinting of Acinetobacter spp. J Clin Microbiol 35 :3071–3077.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Stegemann J, Schwager C, Erfle H, Hewitt N, Voss H, Zimmermann J, Ansorge W, 1991. High speed on-line DNA sequencing on ultrathin slab gels. Nucleic Acids Res 19 :675–676.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Towner K, Grundmann H, 2001. Generation and analysis of RAPD fingerprinting profiles. Dijkshoorn L, Towner KJ, Struelens M, eds. New Approaches for the Generation and Analysis of Microbial Typing Data. Amsterdam: Elsevier Science B.V., 135–157.

    • PubMed
    • Export Citation
  • 39

    Pit DS, Rijcken FE, Raspoort EC, Baeta SM, Polderman AM, 1999. Geographic distribution and epidemiology of Oesophagostomum bifurcum and hookworm infections in humans in Togo. Am J Trop Med Hyg 61 :951–955.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Eberhard ML, Kovacs-Nace E, Blotkamp J, Verwij JJ, Asigri VA, Polderman AM, 2001. Experimental Oesophagostomum bifurcum in monkeys. J Helminthol 75 :51–56.

  • 41

    Vos P, Hogers R, Bleeker M, Reijans M van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23 :4407–4414.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 52 48 1
Full Text Views 239 5 1
PDF Downloads 46 2 2
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save