• 1

    Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 :100–103.

    • Search Google Scholar
    • Export Citation
  • 2

    Lam SK, 1998. Emerging infectious diseases—Southeast Asia. Emerg Infect Diseases 4 :145–147.

  • 3

    Pant CP, Jatanasen S, Yasuno M, 1973. Prevalence of Aedes aegypti and Aedes albopictus and observations on the ecology of dengue haemorrhagic fever in several areas of Thailand. Southeast Asian J Trop Med Public Health 4 :113–121.

    • Search Google Scholar
    • Export Citation
  • 4

    Strickman D, Kittayapong P, 1993. Laboratory demonstration of oviposition by Aedes aegypti (Diptera: Culicidae) in covered water jars. J Med Entomol 30 :947–949.

    • Search Google Scholar
    • Export Citation
  • 5

    Trpis M, Hausermann W, 1986. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 35 :1263–1279.

    • Search Google Scholar
    • Export Citation
  • 6

    Reiter P, Amador MA, Anderson RA, Clark GG, 1995. Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52 :177–179.

    • Search Google Scholar
    • Export Citation
  • 7

    Ordonez-Gonzales JG, Mercado-Hernandez R, Flores-Suarez AE, Fernandez-Salas I, 2001. The use of sticky ovitraps to estimate dispersal of Aedes aegypti in northeastern Mexico. J Am Mosq Control Assoc 17 :93–97.

    • Search Google Scholar
    • Export Citation
  • 8

    Tsuda Y, Takagi M, Wang S, Wang Z, Tang L, 2001. Movement of Aedes aegypti (Diptera: Culicidae) released in a small isolated village on Hainan Island, China. J Med Entomol 38 :93–98.

    • Search Google Scholar
    • Export Citation
  • 9

    Kohn M, 1990. A survey on indoor resting mosquito species in Phnom Penh, Kampuchea. Folia Parasitol 37 :165–174.

  • 10

    Paupy C, Chantha N, Reynes JM, Failloux AB, 2003. Variation over space and time of Aedes aegypti in Phnom Penh (Cambodia): genetic structure and oral susceptibility to a dengue virus. Genet Res (in press).

  • 11

    Moore CG, Cline BL, Ruiz-Tiben E, Lee D, Romney-Joseph H, Rivera-Correa E, 1978. Aedes aegypti in Puerto-Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 27 :1225–1231.

    • Search Google Scholar
    • Export Citation
  • 12

    Huber K, Luu Le L, Tran Huu H, Tran Khan T, Rodhain F, Failloux AB, 2002. Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam). Heredity 89 :7–14.

    • Search Google Scholar
    • Export Citation
  • 13

    Rathavuth H, Vaughn DW, Minn K, Nimmannitya S, Nisalak A, Raengsakulrach B, Rorabaugh ML, Yuvatha K, Sophal O, 1997. Hemorrhagic fever in Cambodia is caused by dengue viruses: evidence of transmission of all four serotypes. Southeast Asian J Trop Med Public Health 28 :120–125.

    • Search Google Scholar
    • Export Citation
  • 14

    Chantha N, Guyant P, Hoyer S, 1999. Control of DHF outbreak in Cambodia, 1998. Dengue Bull 22 (http://w3.whosea.org/DengueBulletin22/ch12.htm).

  • 15

    Rawlins SC, Wan JH, 1995. Resistance in some Caribbean populations of Aedes aegypti to several insecticides. J Am Mosq Control Assoc 11 :59–65.

    • Search Google Scholar
    • Export Citation
  • 16

    Tran Khanh T, Vazeille-Falcoz M, Mousson L, Tran Huu H, Rodhain F, Nguyen Thi H, Failloux AB, 1999. Aedes aegypti in Ho Chi Minh City (Vietnam): susceptibility to dengue 2 virus and genetic differentiation. Trans R Soc Trop Med Hyg 93 :581–586.

    • Search Google Scholar
    • Export Citation
  • 17

    Huber K, Luu Le L, Tran Huu H, Ravel S, Rodhain F, Failloux AB, 2002. Genetic differentiation of the dengue vector Aedes aegypti (Ho Chi Minh City, Viet Nam) using microsatellite markers. Mol Ecol 11 :1629–1635.

    • Search Google Scholar
    • Export Citation
  • 18

    Mousson L, Vazeille M, Chawprom S, Prajakwong S, Rodhain F, Failloux AB, 2002. Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission. Trop Med Int Health 7 :865–872.

    • Search Google Scholar
    • Export Citation
  • 19

    Paupy C, Vazeille-Falcoz M, Mousson L, Rodhain F, Failloux AB, 2000. Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. Am J Trop Med Hyg 62 :217–224.

    • Search Google Scholar
    • Export Citation
  • 20

    Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 :248–249.

  • 21

    Haldane JBS, 1954. An exact test for randomness of mating. J Genet 52 :631–635.

  • 22

    Fisher RA, 1970. Statistical Methods for Research Workers. 14th edition. Edinburgh: Olivier and Boyd.

  • 23

    Rousset F, Raymond M, 1995. Testing heterozygote excess and deficiency. Genetics 140 :1413–1419.

  • 24

    Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38 :1358–1370.

  • 25

    Holm S, 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6 :65–70.

  • 26

    Slatkin M, 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47 :264–279.

  • 27

    Apostol BL, Black WC, Reiter P, Miller BR, 1996. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity 76 :325–334.

    • Search Google Scholar
    • Export Citation
  • 28

    Honorio N, Da Costa Silva W, José Leite P, Monteiro Gonçalves J, Lounibos LP, Lourenço-de-Oliveira R, 2003. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98 :191–198.

    • Search Google Scholar
    • Export Citation
  • 29

    Strickman D, Kittayapong P, 2003. Dengue and its vector in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitats. Am J Trop Med Hyg 68 :209–217.

    • Search Google Scholar
    • Export Citation
  • 30

    Lerdthusnee K, Chareonviriyaphap T, 1999. Comparison of isozyme patterns of Aedes aegypti populations collected from pre- and post-Bacillus thuringiensis israelensis treatment sites in Thailand. J Am Mosq Control Assoc 15 :48–52.

    • Search Google Scholar
    • Export Citation
  • 31

    Huber K, Luu Le L, Chantha N, Failloux AB, 2003. Human displacements shape Aedes aegypti gene flow in Southeast Asia. Acta Trop: (in press).

  • 32

    Raymond M, Callaghan A, Fort P, Pasteur N, 1991. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350 :151–153.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

INFLUENCE OF BREEDING SITES FEATURES ON GENETIC DIFFERENTIATION OF AEDES AEGYPTI POPULATIONS ANALYZED ON A LOCAL SCALE IN PHNOM PENH MUNICIPALITY OF CAMBODIA

View More View Less
  • 1 Unité Insectes et Maladies Infectieuses et Ecole Pasteurienne d’Infectiologie, Institut Pasteur, Paris, France; National Malaria Center, Phnom Penh, Cambodia; Unité de Virologie, Institut Pasteur du Cambodge, Phnom Penh, Cambodia

This study analyzed genetic differentiation of 20 Aedes aegypti populations collected along a street in Phnom Penh Municipality of Cambodia. Using allozyme and microsatellite variations, we demonstrated that populations were differentiated and the pattern of differentiation was dependent on the type of breeding sites. Moreover, insecticide treatments with temephos mostly affect the population functioning of discarded containers. Low gene flow detected could limit the natural diffusion of resistant populations that might instead take advantage of human displacements to spread.

Save