• 1

    Schlein Y, Warburg A, Schnur LF, Gunders A, 1982. Leishmaniasis in the Jordan Valley. II. Sandflies and transmission in the central endemic area. Trans R Soc Trop Med Hyg 76 :582–586.

    • Search Google Scholar
    • Export Citation
  • 2

    Schlein Y, Warburg A, Schnur LF, Le Blancq SM, Gunders A, 1984. Leishmaniasis in Israel: reservoir hosts, sandfly vectors and leishmanial strains in the Negev, Central Arava and along the Dead Sea and transmission in the central endemic area. Trans R Soc Trop Med Hyg 78 :480–484.

    • Search Google Scholar
    • Export Citation
  • 3

    Wasserberg G., Abramsky Z, Kotler BP, El Fari M, Schoenian G, Kabalo I, Schnur L, Anders GA, Warburg A, 2002. The Eco-epidemiology of cutaneous leishmaniasis in the Western Negev of Israel: heterogeneity in host prevalence and its underlying ecological mechanisms. Int J Parasitol 32 :133–143.

    • Search Google Scholar
    • Export Citation
  • 4

    Fryauff DJ, Modi GB, Mansour NS, Kreutzer RD, Soliman S, Youssef FG, 1993. Epidemiology of cutaneous leishmaniasis at a focus monitored by the Multinational Force and observers in the northeastern Sinai Desert of Egypt. Am J Trop Med Hyg 49 :598–607.

    • Search Google Scholar
    • Export Citation
  • 5

    Schnur LF, Le Blancq SM, 1986. The serological and enzymological characterization of aetiological agents of leishmaniasis in Israel. Rioux J-A, ed. The Leishmania. Taxonomie et Phylogenese. Application Eco-Epidemiologiques. Montpellier: Colloque International CNRS/INSERM/OMS, 1984, IMEEE, 347–355.

  • 6

    Schnur LF, Chance ML, Ebert F, Thomas SC, Peters W, 1981. The biochemical and serological taxonomy of visceralizing Leishmania. Ann Trop Med Parasitol 75 :131–144.

    • Search Google Scholar
    • Export Citation
  • 7

    Jacobson RL, Eisenberger CL, Svobodova M, Baneth G, Sztern J, Carvalho J, Nasereddin A, El Fari M, Shalom U, Volf P, Votypka J, Dedet JP, Pratlong F, Schonian G, Schnur LF, Jaffe CL, Warburg A, 2003. Outbreak of cutaneous leishmaniasis in northern Israel. J Infect Dis 188 :1065–1073.

    • Search Google Scholar
    • Export Citation
  • 8

    Jaffe CL, McMahon D, 1983. Monoclonal antibodies specific for Leishmania tropica. I. Characterization of antigens associated with stage- and species-specific determinants. J Immunol 131 :1987–1993.

    • Search Google Scholar
    • Export Citation
  • 9

    Le Blancq SM, Peters W, 1986. Leishmania in the Old World: Heterogeneity among L. tropica zymodemes. Trans R Soc Trop Med Hyg 80 :113–119.

    • Search Google Scholar
    • Export Citation
  • 10

    Rioux JA, Lanotte G, Serres E, Pratlong F, Bastien P, Perieres J, 1990. Taxonomy of Leishmania. Use of enzymes. Suggestions for a new classification. Ann Parasitol Hum Comp 65 :111–125.

    • Search Google Scholar
    • Export Citation
  • 11

    Schonian G, Schnur LF, El Fari M, Oskam L, Kolesnikov AA, Sokolowska-Kohler W, Presber W, 2001. Genetic heterogeneity in the species Leishmania tropica revealed by PCR-based methods. Trans R Soc Trop Med Hyg 95 :217–224.

    • Search Google Scholar
    • Export Citation
  • 12

    Al-Zahrani MA, Peters W, Evans DA, Chin C, Smith V, Lane RP, 1988. Phlebotomus sergenti, a vector of Leishmania tropica in Saudi Arabia. Trans R Soc Trop Med Hyg 82 :416.

    • Search Google Scholar
    • Export Citation
  • 13

    Guilvard E, Rioux J-A, Gallego M, Pratlong F, Mahjour J, Martinez-Ortega E, Dereure J, Saddiki A, Martini A, 1991. Leishmania tropica au Maroc. III. Role vecteur de Phlebotomus sergenti. A propos de 89 isolates. Ann Parasitol Hum Comp 66 :96–99.

    • Search Google Scholar
    • Export Citation
  • 14

    Killick-Kendrick R, Killick-Kendrick M, Tang Y, 1995. Anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan: the high susceptibility of Phlebotomus sergenti to Leishmania tropica. Trans R Soc Trop Med Hyg 89 :477.

    • Search Google Scholar
    • Export Citation
  • 15

    Klaus S, Axelrod O, Jonas F, Frankenburg S, 1994. Changing patterns of cutaneous leishmaniasis in Israel and neighbouring territories. Trans R Soc Trop Med Hyg 88 :649–650.

    • Search Google Scholar
    • Export Citation
  • 16

    Eisenberger CL, Jaffe CL, 1999. Leishmania: identification of Old World species using a permissively primed intergenic polymorphic-polymerase chain reaction. Exp Parasitol 91 :70–77.

    • Search Google Scholar
    • Export Citation
  • 17

    Theodor O, 1958. Psychodidae-Phlebotominae. Lindner E, ed. Die Fliegen der Palaearktischen Region. Volume 9. Psychodidae. Stuttgart, Germany: Nagele/Obermiller, 1–55.

  • 18

    Lewis DJ, 1982. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull Br Mus Nat Hist 45 :121–209.

  • 19

    Schnur LF, Jacobson RL, 1987. Appendix III. Parasitological Techniques. Peters W, Killick-Kendrick R, eds. The Leishmaniases in Biology and Medicine. Volume I. London: Academic Press, 449–541.

  • 20

    Schnur LF, Zuckerman A, 1977. Leishmanial excreted factor (EF) serotypes in Sudan, Kenya and Ethiopia. Ann Trop Med Parasitol 71 :273–294.

    • Search Google Scholar
    • Export Citation
  • 21

    Schnur LF, Sarfstein R, Jaffe CL, 1990. Monoclonal antibodies against leishmanial membranes react with specific excreted factors (EF). Ann Trop Med Parasitol 84 :447–456.

    • Search Google Scholar
    • Export Citation
  • 22

    Sarfstein R, Jaffe CL, 1989. Identification of Leishmania tropica by species specific monoclonal antibodies. NATO Adv Sci Inst Ser A 163 :925–929.

    • Search Google Scholar
    • Export Citation
  • 23

    Smith DF, Searle S, Ready PD, Gramiccia M, Ben Ismael R, 1989. A kinetoplast DNA probe diagnostic for Leishmania major sequence homologies between regions of Leishmania minicircles. Mol Biochem Parasitol 37 :213–224.

    • Search Google Scholar
    • Export Citation
  • 24

    Anders G, Eisenberger, CL, Jonas F, Greenblatt CL, 2002. Distinguishing Leishmania tropica and Leishmania major in the Middle East using the polymerase chain reaction with kinetoplast DNA specific primers. Trans R Soc Trop Med Hyg 96 (suppl 1):87–92.

    • Search Google Scholar
    • Export Citation
  • 25

    Schonian G, Akuffo H, Lewin S, Maasho K, Nylen S, Pratlong F, Eisenberger CL, Schnur LF, Presber W, 2000. Genetic variability within the species Leishmania aethiopica does not correlate with clinical variations of cutaneous leishmaniasis. Mol Biochem Parasitol 106 :239–248.

    • Search Google Scholar
    • Export Citation
  • 26

    El Tai NO, Osman OF, El Fari M, Presber W, Schonian G, 2000. Genetic heterogeneity of ribosomal internal transcribed spacer (ITS) in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-stranded conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg 94 :575–579.

    • Search Google Scholar
    • Export Citation
  • 27

    Gomes RF, Macedo AM, Pena SD, Melo MN, 1995. Leishmania (Viannia) braziliensis: genetic relationships between strains isolated from different areas of Brazil as revealed by DNA fingerprinting and RAPD. Exp Parasitol 80 :681–687.

    • Search Google Scholar
    • Export Citation
  • 28

    Jeffreys AJ, Wilson V, Thein SL, 1985. Hypervariable “minisatellite” regions in human DNA. Nature 314 :67–73.

  • 29

    Bastian P, Killick-Kendrick R, 1992. Leishmania tropica infection in hamsters and a review of the animal pathogenicity of this species. Exp Parasitol 75 :433–441.

    • Search Google Scholar
    • Export Citation
  • 30

    Schnur F, Zuckerman A, Montilio B, 1973. Dissemination of Leishmanias to the organs of Syrian hamsters following intrasplenic inoculation of promastigotes. Exp Parasitol 34 :432–447.

    • Search Google Scholar
    • Export Citation
  • 31

    McConville MJ, Schnur LF, Jaffe CL, Schneider P, 1994. Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochem J 310 :807–818.

    • Search Google Scholar
    • Export Citation
  • 32

    Kreutzer RD, Grogl M, Neva FA, Fryauff DJ, Magill AJ, Aleman-Munoz MM, 1993. Identification and genetic comparison of leishmanial parasites causing viscerotropic and cutaneous disease in soldiers returning from Operation Desert Storm. Am J Trop Med Hyg 49 :357–363.

    • Search Google Scholar
    • Export Citation
  • 33

    Saliba EK, Saleh N, Oumeish OY, Khoury S, Bisharat Z, Al-Ouran R, 1997. The endemicity of Leishmania tropica (zymodeme MON-137) in the Eira-Yarqa area of Salt District, Jordan. Ann Trop Med Parasitol 91 :453–459.

    • Search Google Scholar
    • Export Citation
  • 34

    Greenblatt CL, Schnur LF, Juster R, Sulitzeanu A, 2002. Clonal heterogeneity in populations of Leishmania major. Isr J Med Sci 26 :129–135.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MULTIFARIOUS CHARACTERIZATION OF LEISHMANIA TROPICA FROM A JUDEAN DESERT FOCUS, EXPOSING INTRASPECIFIC DIVERSITY AND INCRIMINATING PHLEBOTOMUS SERGENTI AS ITS VECTOR

View More View Less
  • 1 Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University–Hadassah Medical School, Jerusalem, Israel; Institut für Mikrobiologie und Hygiene, Charité Campus Mitte, von Humboldt Universität zu Berlin, Berlin, Germany; Department of Biochemistry, Al-Quds University, Palestinian Authority; Department of Biological Sciences, Imperial College, London, United Kingdom; Laboratoire de Parasitologie and Centre National de Référence des Leishmania, Montpellier, France; Department of Biology, Bethlehem University, Palestinian Authority

The predominant sand fly species collected inside houses in Kfar Adumim, an Israeli village in the Judean Desert that is a focus of cutaneous leishmaniasis, was Phlebotomus papatasi, which was also caught attempting to bite humans. Phlebotomus sergenti, which is rarely seen inside houses, constituted the predominant sand fly species in caves near the village. Leishmania isolates from Ph. sergenti and humans typed as Leishmania tropica. Sand fly and human isolates produced similar small nodular cutaneous lesions in hamsters. Isolates produced excreted factor (EF) of subserotypes A9 or A9B2, characteristic of L. tropica and reacted with L. tropica-specific monoclonal antibodies. Isoenzyme analysis consigned the strains to the L. tropica zymodemes MON-137 and MON-275. Molecular genetic analyses confirmed the strains were L. tropica and intraspecific microheterogeneity was observed. Genomic fingerprinting using a mini-satellite probe separated the L. tropica strains into two clusters that were not entirely congruent with geographic distribution. These results support the heterogeneous nature of L. tropica and incriminate Ph. sergenti as its vector in this Judean Desert focus.

Save