• 1

    Turell MJ, O’Guinn ML, Dohm DJ, Jones JW, 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38 :130–134.

    • Search Google Scholar
    • Export Citation
  • 2

    Kulasekera VL, Kramer L, Nasci RS, Mostashari F, Cherry B, Trock SC, Glaser C, Miller JR, 2001. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerg Infect Dis 7 :722–725.

    • Search Google Scholar
    • Export Citation
  • 3

    Tsai TF, Mitchell CJ, 1989. St. Louis encephalitis. Monath TP, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 113–143.

  • 4

    Farid HA, Hammad RE, Hassan MM, Morsy ZS, Kamal IH, Weil GJ, Ramzy RM, 2001. Detection of Wuchereria bancrofti in mosquitoes by the polymerase chain reaction: a potentially useful tool for large-scale control programmes. Trans R Soc Trop Med Hyg 95 :29–32.

    • Search Google Scholar
    • Export Citation
  • 5

    Fonseca DM, LaPointe DA, Fleischer RC, 2000. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol Ecol 9 :1803–1814.

    • Search Google Scholar
    • Export Citation
  • 6

    Nasci RS, Miller BR, 1996. Culicine mosquitoes and the agents they transmit. Beaty BJ, Marquardt WC, eds. The Biology of Diseases Vectors. Niwot, CO: University of Colorado Press, 85–97.

  • 7

    Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S, 1997. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25 :3235–3241.

    • Search Google Scholar
    • Export Citation
  • 8

    Crabtree MB, Savage HM, Miller BR, 1995. Development of a species-diagnostic polymerase chain reaction assay for the identification of Culex vectors of St. Louis encephalitis virus based on interspecies sequence variation in ribosomal DNA spacers. Am J Trop Med Hyg 53 :105–109.

    • Search Google Scholar
    • Export Citation
  • 9

    Urbanelli S, Silvestrini F, Reisen WK, De Vito E, Bullini L, 1997. Californian hybrid zone between Culex pipiens pipiens and Cx. p. quinquefasciatus revisited (Diptera:Culicidae). J Med Entomol 34: 116–127.

    • Search Google Scholar
    • Export Citation
  • 10

    Bourguet D, Fonseca D, Vourch G, Dubois MP, Chandre F, Severini C, Raymond M, 1998. The acetylcholinesterase gene Ace: a diagnostic marker for the pipiens and quinquefasciatus forms of the Culex pipiens complex. J Am Mosq Control Assoc 14 :390–396.

    • Search Google Scholar
    • Export Citation
  • 11

    Crabtree MB, Savage HM, Miller BR, 1997. Development of a polymerase chain reaction assay for differentiation between Culex pipiens pipiens and Cx. p. quinquefasciatus (Diptera: Culicidae) in North America based on genomic differences identified by subtractive hybridization. J Med Entomol 34: 532–537.

    • Search Google Scholar
    • Export Citation
  • 12

    Barr AR, 1957. The distribution of Culex p. pipiens and Culex p. quinquefasciatus in North America. Am J Trop Med Hyg 6: 153–165.

  • 13

    Vinagradova EB, 2000. Culex pipiens pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. Moscow, Russia: Pensoft.

  • 14

    Service MW, 1968. The taxonomy and biology of two sympatric sibling species of Culex, C. pipiens and C. torrentium (Diptera, Culicidae). J Zool Soc Lond 156 :313–323.

    • Search Google Scholar
    • Export Citation
  • 15

    Belkin JN, 1968. Mosquito studies (Diptera: Culicidae) VII. The Culicidae of New Zealand. Contrib Am Entomol Inst 3 :1–182.

  • 16

    Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M, 2003. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 40 :36–51.

    • Search Google Scholar
    • Export Citation
  • 17

    Humeres SG, Almiron WR, Sabattini MS, Gardenal CN, 1998. Estimation of genetic divergence and gene flow between Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in Argentina. Mem Inst Oswaldo Cruz 93 :57–62.

    • Search Google Scholar
    • Export Citation
  • 18

    Urbanelli S, Silvestrini F, Sabatinelli G, Raveloarifera F, Petrarca V, Bullini L, 1995. Characterization of the Culex pipiens complex (Diptera: Culicidae) in Madagascar. J Med Entomol 32 :778–786.

    • Search Google Scholar
    • Export Citation
  • 19

    Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155 :945–959.

  • 20

    Fonseca DM, Keyghobadi N, Malcolm C, Mehmet C, Mogi M, Schaffner F, Fleischer RC, Wilkerson RC, 2004. Emerging vectors in the Culex pipiens complex. Science 303: (in press).

  • 21

    Tautz D, Trick M, Dover GA, 1986. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322 :652–656.

  • 22

    Fonseca DM, Atkinson CT, Fleischer RC, 1998. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7 :1617–1619.

    • Search Google Scholar
    • Export Citation
  • 23

    Keyghobadi N, Matrone MA, Ebel G, Kramer LD, Fonseca DM, 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: (in press).

  • 24

    Wilton DP, Jakob WL, 1985. Temperature-induced morphological change in Culex pipiens. J Am Mosq Control Assoc 1 :174–177.

  • 25

    Bourguet D, Raymond M, Fournier D, Malcolm CA, Toutant JP, Arpagaus M, 1996. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J Neurochem 67 :2115–2123.

    • Search Google Scholar
    • Export Citation
  • 26

    Malcolm CA, Bourguet D, Ascolillo A, Rooker SJ, Garvey CF, Hall LM, Pasteur N, Raymond M, 1998. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol 7 :107–120.

    • Search Google Scholar
    • Export Citation
  • 27

    Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M, 2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc R Soc Lond B Biol Sci 269 :2007–2016.

    • Search Google Scholar
    • Export Citation
  • 28

    Rozen S, Skaletsky HJ, 2000. Primer3 on the WWW for general users and for biologist programmers. Krawetz S, Misener S, eds. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press, 365–386.

  • 29

    Guillemaud T, Pasteur N, Rousset F, 1997. Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. Proc R Soc Lond B Biol Sci 264 :245–251.

    • Search Google Scholar
    • Export Citation
  • 30

    Stouthamer R, Breeuwer JA, Hurst GD, 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53 :71–102.

    • Search Google Scholar
    • Export Citation
  • 31

    Cohen J, 1988. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates.

  • 32

    Nasci RS, White DJ, Stirling H, Oliver J, Daniels TJ, Falco RC, Campbell S, Crans WJ, Savage HM, Lanciotti RS, Moore CG, Godsey MS, Gottfried KL, Mitchell CJ, 2001. West Nile virus isolates from mosquitoes in New York and New Jersey, 1999. Emerg Infect Dis 7 :626–630.

    • Search Google Scholar
    • Export Citation
  • 33

    Aspen S, Crabtree MB, Savage HM, 2003. Polymerase chain reaction assay identifies Culex nigripalpus: part of an assay for molecular identification of the common Culex (Culex) mosquitoes of the eastern United States. J Am Mosq Control Assoc 19 :115–120.

    • Search Google Scholar
    • Export Citation
  • 34

    Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen HM, Watson SE, Wesley D, Rueda LM, Engber BR, Nasci RS, 2002. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39 :777–785.

    • Search Google Scholar
    • Export Citation
  • 35

    Dahl C, 1988. Taxonomic studies on Culex pipiens and C. torrentium. Biosystematics of Haematophagous Insects. Oxford: Oxford Systematics Association, 149–175.

  • 36

    Belkin JN, 1962. The Mosquitoes of the South Pacific (Diptera: Culicidae). Berkeley, CA: University of California Press.

  • 37

    Mattingly PF, Roseboom LE, Lloyd E, Knight KL, Laven H, Drummond FH, Christophers SR, Shute PG, 1951. The Culex pipiens complex. Trans R Entonol Soc Lond 102 :331–382.

    • Search Google Scholar
    • Export Citation
  • 38

    Lee DJ, Hicks MM, Debenham ML, Griffiths M, Marks EN, Bryan JH, Russell RC, 1989. The Culicidae of the Australasian region: nomenclature, synonymy, literature, distribution, biology and relation to disease. Genus Culex, subgenera Acallyntrum, Culex. Debenham ML, ed. Entomology Monograph. Canberra: Australian Government Publishing Service.

  • 39

    Tanaka K, Mizusawa K, Saugstad ES, 1979. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasaware Islands) and Korea (Diptera: Culicidae). Contrib Am Entomol Inst 16 :1–987.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 629 264 16
PDF Downloads 441 151 12
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

RAPID ASSAYS FOR IDENTIFICATION OF MEMBERS OF THE CULEX (CULEX) PIPIENS COMPLEX, THEIR HYBRIDS, AND OTHER SIBLING SPECIES (DIPTERA: CULICIDAE)

View More View Less
  • 1 Genetics Program, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
Restricted access

Mosquitoes in the Culex (Culex) pipiens complex of species, known as vectors of periodic filariasis and deadly encephalitides, have recently emerged as important vectors of West Nile virus in the United States. Highly conserved morphology but marked differences in potential vectorial capacity require the development of polymerase chain reaction (PCR)-based tests that unambiguously distinguish among the different species. We introduce and describe a series of PCR-based assays that use polymorphisms in the second intron of the acetylcholinesterase-2 (ace-2) locus for the identification of members of the Cx. pipiens complex (Cx. pipiens, Cx. quinquefasciatus, Cx. p. pallens, Cx. australicus), two other species that are commonly mislabeled as Cx. pipiens (Cx. torrentium and Cx. pervigilans), as well as hybrids between Cx. pipiens and Cx. quinquefasciatus.

Save