• 1

    Harbach RE, 1994. Review of the internal classification of the genus Anopheles (Diptera: Culicidae): the foundation for comparative systematics and phylogenetic research. Bull Entomol Res 84 :331–342.

    • Search Google Scholar
    • Export Citation
  • 2

    Harrison BA, 1980. The Myzomyia Series of Anopheles (Cellia) in Thailand, with emphasis on intra-interspecific variations (Diptera: Culicidae). Medical entomology studies - XIII. Contr Am Entomol Inst 17 :1–195.

    • Search Google Scholar
    • Export Citation
  • 3

    Gillies MT, Coetzee M, 1987. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Publication no. 55. Johannesburg, South Africa: South African Institute for Medical Research.

  • 4

    Gillies MT, de Meillon B, 1968. The Anophelinae of Africa South of the Sahara. Publication no. 54. Johannesburg, South Africa: Publications of the South African Institute for Medical Research.

  • 5

    Mouchet J, Manguin S, Sircoulon J, Laventure S, Faye O, Onapa AW, Carnevale P, Julvez J, Fontenille D, 1998. Evolution of malaria in Africa for the past 40 years: impacts of climatic and human factors. J Am Mosq Control Assoc 14 :121–130.

    • Search Google Scholar
    • Export Citation
  • 6

    Koekemoer LL, Coetzee M, Hunt RH, 1998. Hpall endonuclease distinguishes between two species in the Anopheles funestus group. Insect Mol Biol 7 :273–277.

    • Search Google Scholar
    • Export Citation
  • 7

    Koekemoer LL, Kamau L, Hunt RH, Coetzee M, 2002. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 66 :804–811.

    • Search Google Scholar
    • Export Citation
  • 8

    Koekemoer LL, Lochouarn L, Hunt RH, Coetzee M, 1999. Single-strand conformation polymorphism analysis for identification of four members of the Anopheles funestus (Diptera: Culicidae) group. J Med Entomol 36 :125–130.

    • Search Google Scholar
    • Export Citation
  • 9

    Baimai V, Kijchalao U, Rattanarithikul R, 1996. Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: V. The Myzomyia Series, subgenus Cellia (Diptera:Culicidae). J Am Mosq Control Assoc 12 :97–105.

    • Search Google Scholar
    • Export Citation
  • 10

    Chen B, Harbach RE, Butlin RK, 2002. Molecular and morphological studies on the Anopheles minimus group of mosquitoes in southern China: taxonomic review, distribution and malaria vector status. Med Vet Entomol 16 :253–265.

    • Search Google Scholar
    • Export Citation
  • 11

    Kengne P, Trung HD, Baimai V, Coosemans M, Manguin S, 2001. A multiplex PCR-based method derived from random amplified polymorphic DNA (RAPD) markers for the identification of species of the Anopheles minimus group in Southeast Asia. Insect Mol Biol 10 :427–435.

    • Search Google Scholar
    • Export Citation
  • 12

    Green CA, Gass RF, Munstermann LE, Baimai V, 1990. Population-genetic evidence for two species in Anopheles minimus in Thailand. Med Vet Entomol 4 :25–34.

    • Search Google Scholar
    • Export Citation
  • 13

    Manguin S, Mouchet J, Coosemans M, 2001. Molecular identification of sibling Anopheles species: example of the Anopheles minimus and Anopheles dirus complexes, major malarial vectors in Southeast Asia. Med Trop (Mars) 61 :463–469.

    • Search Google Scholar
    • Export Citation
  • 14

    Van Bortel W, Trung HD, Roelants P, Harbach RE, Backeljau T, Coosemans M, 2000. Molecular identification of Anopheles minimus s.l. beyond distinguishing the members of the species complex. Insect Mol Biol 9 :335–340.

    • Search Google Scholar
    • Export Citation
  • 15

    IMPE, 1987. Keys to the Anopheles in Vietnam (Adults-Pupae-Larvae). Hanoi, Vietnam: Department of Entomology, Institute of Malarialogy, Parasitology and Entomology.

  • 16

    Koekemoer LL, Hargreaves K, Hunt RH, Coetzee M, 2002. Identification of Anopheles parensis (Diptera: Culicidae) using ribosomal DNA internal transcribed spacer (ITS2) sequence variation. Afr Entomol 10 :235–239.

    • Search Google Scholar
    • Export Citation
  • 17

    Linton YM, Harbach RE, Chang Moh S, Anthony TG, Matusop A, 2001. Morphological and molecular identity of Anopheles (Cellia) sundaicus (Diptera: Culicidae), the nominotypical member of a malaria vector species complex in Southeast Asia. Syst Entomol 26 :357–366.

    • Search Google Scholar
    • Export Citation
  • 18

    Hall TA, 1989. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41 :95–98.

    • Search Google Scholar
    • Export Citation
  • 19

    Collins FH, Paskewitz SM, 1996. A review of the use of ribosomal DNA to differentiate among cryptic Anopheles species. Insect Mol Biol 5 :1–9.

    • Search Google Scholar
    • Export Citation
  • 20

    Foley DH, Beebe N, Torres E, Saul A, 1996. Misidentification of a Philippine malaria vector revealed by allozyme and ribosomal DNA markers. Am J Trop Med Hyg 54 :46–48.

    • Search Google Scholar
    • Export Citation
  • 21

    Manonmani A, Townson H, Adeniran T, Jambulingam P, Sahu SS, Vijayakumar T, 2001. rDNA-ITS2 polymerase chain reaction assay for the sibling species of Anopheles fluviatilis.Acta Trop 78 :3–9.

    • Search Google Scholar
    • Export Citation
  • 22

    Onyabe DY, Conn JE, 1999. Intragenomic heterogeneity of a ribosomal DNA spacer (ITS2) varies regionally in the neotropical malaria vector Anopheles nuneztovari (Diptera: Culicidae). Insect Mol Biol 8 :435–442.

    • Search Google Scholar
    • Export Citation
  • 23

    Tang J, Toè L, Back C, Unnasch TR, 1996. Intra-specific heterogeneity of the rDNA ITS in the Simulium damnosum (Diptera: Simuliidae) complex. Mol Biol Evol 13 :244–252.

    • Search Google Scholar
    • Export Citation
  • 24

    Sinkins SP, Hackett BJ, Costantini C, Vulule JM, Ling YY, Collins FH, Besansky NJ, 2000. Isolation of polymorphism micro-satellite loci from the malaria vector Anopheles funestus.Mol Ecol 9 :489–504.

    • Search Google Scholar
    • Export Citation
  • 25

    Boccolini D, Sagnon NF, Touré YT, 1998. Chromosomal polymorphism in Anopheles funestus and description of new inversions in Burkina Faso and Mali. Parassitologia 40 :14.

    • Search Google Scholar
    • Export Citation
  • 26

    Lochouarn L, Dia L, Boccolini D, Coluzzi M, Fontenille D, 1998. Bionomical and cytogenetic heterogeneities of Anopheles funestus.Trans R Soc Trop Med Hyg 92 :607–612.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

RESTRICTION FRAGMENT LENGTH POLYMORPHISM METHOD FOR THE IDENTIFICATION OF MAJOR AFRICAN AND ASIAN MALARIA VECTORS WITHIN THE ANOPHELES FUNESTUS AND AN. MINIMUS GROUPS

View More View Less
  • 1 Institute of Research for Development, Centre of Biology and Management of Populations, Montpellier, France; Vector Control Reference Unit, National Institute for Communicable Diseases, Johannesburg, South Africa; Department of Clinical Microbiology and Infectious Diseases, School of Pathology of the National Health Laboratory Service and University of the Witwatersrand, Johannesburg, South Africa; Centre for Biotechnology Research and Development, Nairobi, Kenya; Department of Parasitology, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium

The African Anopheles funestus and the Asian An. minimus groups are closely related and are probably considered distinct only because of their geographic separation. This study aimed at improving two identification methods based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) already developed for either group. Each PCR-RFLP, either on the internal transcribed spacer 2 (ITS2) for the An. minimus group, and domain 3 (D3) for the An. funestus group, was applied to the other group for the standardization of one identification method applicable on both continents. The ITS2 fragment digested by Bsi ZI showed the highest diagnostic power. This assay allowed the discrimination of at least 13 Anopheles species within the subgenus Cellia from two continents (Africa and Asia), among which are five major malaria vectors. Moreover, digestion of the D3 with Msp I showed intragenomic variations within An. funestus populations. Two types of D3 copies (M and W) occurred in specimens from southern Africa. The populations from West-Central Africa presented only type W and East-Malagasy populations exhibited type M. Since An. funestus shows a great capacity of adaptation, these molecular variations, along with behavioral and ecologic ones, reinforce the hypothesis of a species complex that will need to be further investigated.

Author Notes

Reprint requests: C. Garros or S. Manguin, Centre of Biology and Management of Populations, Campus de Baillarguet, CS 30016, 34988 Montferrier sur Lez, France.
Save