LOW HERITABLE COMPONENT OF RISK FOR INFECTION INTENSITY AND INFECTION-ASSOCIATED DISEASE IN URINARY SCHISTOSOMIASIS AMONG WADIGO VILLAGE POPULATIONS IN COAST PROVINCE, KENYA

CHARLES H. KING Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by CHARLES H. KING in
Current site
Google Scholar
PubMed
Close
,
RONALD E. BLANTON Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by RONALD E. BLANTON in
Current site
Google Scholar
PubMed
Close
,
ERIC M. MUCHIRI Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by ERIC M. MUCHIRI in
Current site
Google Scholar
PubMed
Close
,
JOHN H. OUMA Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by JOHN H. OUMA in
Current site
Google Scholar
PubMed
Close
,
H. CURTIS KARIUKI Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by H. CURTIS KARIUKI in
Current site
Google Scholar
PubMed
Close
,
PETER MUNGAI Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by PETER MUNGAI in
Current site
Google Scholar
PubMed
Close
,
PHILIP MAGAK Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by PHILIP MAGAK in
Current site
Google Scholar
PubMed
Close
,
HILDA KADZO Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by HILDA KADZO in
Current site
Google Scholar
PubMed
Close
,
EDMUND IRERI Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by EDMUND IRERI in
Current site
Google Scholar
PubMed
Close
, and
DAVY K. KOECH Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya; Department of Radiology, Kenyatta National Hospital, Nairobi, Kenya

Search for other papers by DAVY K. KOECH in
Current site
Google Scholar
PubMed
Close
Restricted access

To estimate their heritable component of risk for Schistosoma haematobium infection intensity and disease, we performed a community-based family study among an endemic population in coastal Kenya. Demography and family linkages were defined by house-to-house interviews, and infection prevalence and disease severity were assessed by standard parasitologic testing and by ultrasound. The total population was 4,408 among 912 households, with 241 identified pedigree-household groups. Although age- and sex-adjusted risk for greater infection intensity was clustered within households (odds ratio = 2.7), analysis of extended pedigree-household groups indicated a relatively low heritability score for this trait (h2 = 0.199), particularly after adjustment for common household exposure effects (adjusted h2 = 0.086). Statistical evidence was slightly stronger (h2 = 0.353) for familial clustering of bladder morbidity, with an adjusted h2 = 0.142 after accounting for household exposure factors. We conclude that among long-established populations of coastal Kenya, heritable variation in host susceptibility is low, and likely plays a minimal role in determining individual risk for infection or disease.

Author Notes

Reprint requests: Charles H. King, Center for Global Health and Diseases, W137, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4983.
  • 1

    WHO, 1993. The Control of Schistosomiasis: Second Report of the WHO Expert Committee. Geneva: World Health Organization.

    • PubMed
    • Export Citation
  • 2

    Sturrock RF, 2001. The schistosomes and their intermediate hosts. Mahmoud AAF, ed. Schistosomiasis. London: Imperial College Press, 7–83.

    • PubMed
    • Export Citation
  • 3

    el Kholy H, Arap Siongok TK, Koech D, Sturrock RF, Houser H, King CH, Mahmoud AA, 1989. Effects of borehole wells on water utilization in Schistosoma haematobium endemic communities in Coast Province, Kenya. Am J Trop Med Hyg 41 :212–219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Prata A, 2001. Disease in schistosomiasis mansoni in Brazil. Mahmoud AAF, ed. Schistosomiasis. London: Imperial College Press, 297–332.

    • PubMed
    • Export Citation
  • 5

    Ouma JH, El-Khoby T, Fenwick A, Blanton RE, 2001. Disease in schistosomiasis mansoni in Africa. Mahmoud AAF, ed. Schistosomiasis. London: Imperial College Press, 333–360.

    • PubMed
    • Export Citation
  • 6

    Smith JH, Christie JD, 1986. The pathobiology of Schistosoma haematobium infection in humans. Hum Pathol 17 :333–345.

  • 7

    Abel L, Demenais F, Prata A, Souza AE, Dessein A, 1991. Evidence for the segregation of a major gene in human susceptibility/resistance to infection by Schistosoma mansoni. Am J Hum Genet 48 :959–970.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Marquet S, Abel L, Hillaire D, Dessein H, Kalil J, Feingold J, Weissenbach J, Dessein AJ, 1996. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nat Genet 14 :181–184.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Marquet S, Abel L, Hillaire D, Dessein A, 1999. Full results of the genome-wide scan which localises a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Eur J Hum Genet 7 :88–97.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Muller-Myhsok B, Stelma FF, Guisse-Sow F, Muntau B, Thye T, Burchard GD, Gryseels B, Horstmann RD, 1997. Further evidence suggesting the presence of a locus, on human chromosome 5q31–q33, influencing the intensity of infection with Schistosoma mansoni. Am J Hum Genet 61 :452–454.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Dessein AJ, Hillaire D, Elwali NE, Marquet S, Mohamed-Ali Q, Mirghani A, Henri S, Abdelhameed AA, Saeed OK, Magzoub MM, Abel L, 1999. Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. Am J Hum Genet 65 :709–721.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Rodrigues V Jr, Piper K, Couissinier-Paris P, Bacelar O, Dessein H, Dessein AJ, 1999. Genetic control of schistosome infections by the SM1 locus of the 5q31–q33 region is linked to differentiation of type 2 helper T lymphocytes. Infect Immun 67 :4689–4692.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Bethony J, Gazzinelli A, Lopes A, Pereira W, Alves-Oliveira L, Willams-Blangero S, Blangero J, Loverde P, Correa-Oliveira R, 2001. Genetic epidemiology of fecal egg excretion during Schistosoma mansoni infection in an endemic area in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 96 (Suppl):49–55.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Bethony J, Williams JT, Blangero J, Kloos H, Gazzinelli A, Soares-Filho B, Coelho L, Alves-Fraga L, Williams-Blangero S, Loverde PT, Correa-Oliveira R, 2002. Additive host genetic factors influence fecal egg excretion rates during Schistosoma mansoni infection in a rural area in Brazil. Am J Trop Med Hyg 67 :336–343.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Williams-Blangero S, Blangero J, Bradley M, 1997. Quantitative genetic analysis of susceptibility to hookworm infection in a population from rural Zimbabwe. Hum Biol 69 :201–208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Williams-Blangero S, Subedi J, Upadhayay RP, Manral DB, Rai DR, Jha B, Robinson ES, Blangero J, 1999. Genetic analysis of susceptibility to infection with Ascaris lumbricoides. Am J Trop Med Hyg 60 :921–926.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Williams-Blangero S, McGarvey ST, Subedi J, Wiest PM, Upadhayay RP, Rai DR, Jha B, Olds GR, Guanling W, Blangero J, 2002. Genetic component to susceptibility to Trichuris trichiura: evidence from two Asian populations. Genet Epidemiol 22 :254–264.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Muchiri EM, Ouma JH, King CH, 1996. Dynamics and control of Schistosoma haematobium transmission in Kenya: an overview of the Msambweni Project. Am J Trop Med Hyg 55 :127–134.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Gomm R, 1972. Harlots and bachelors: marital instability among the coastal Digo of Kenya. Man 7 :95–113.

  • 20

    Peters PAS, Kazura JW, 1987. Update on diagnostic methods for schistosomiasis. Mahmoud AAF, ed. Bailliere’s Clinical Tropical Medicine and Communicable Diseases, Schistosomiasis. London: Bailliere Tindall, 419–433.

    • PubMed
    • Export Citation
  • 21

    Savioli S, Hatz C, Dixon H, Kisumku UM, Mott KE, 1990. Control of morbidity due to Schistosoma haematobium on Pemba Island: egg excretion and hematuria as indicators of infection. Am J Trop Med Hyg 43 :289–295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Richter J, Hatz C, Campagne G, Bergquist NR, Jenkins JM, 2000. Ultrasound in Schistosomiasis: A Practical Guide to the Standardized Use of Ultrasonography for the Assessment of Schistosomiasis-Related Morbidity. Geneva: World Health Organization.

    • PubMed
    • Export Citation
  • 23

    King CH, 2002. Ultrasound monitoring of structural urinary tract disease in S. haematobium infection. Mem Inst Oswaldo Cruz 97 (Suppl 1):149–152.

  • 24

    Dyke B, 1989. PEDSYS, PGL Tech. Report No. 2. San Antonio, TX: Southwest Foundation for Biomedical Research.

    • PubMed
    • Export Citation
  • 25

    Almasy L, Blangero J, 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62 :1198–1211.

  • 26

    Williams-Blangero S, Vandeberg JL, Blangero J, Teixeira AR, 1997. Genetic epidemiology of seropositivity for Trypanosoma cruzi infection in rural Goias, Brazil. Am J Trop Med Hyg 57 :538–543.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Woolhouse MEJ, 1998. Patterns in parasite epidemiology: The peak shift. Parasitol Today 14: 428–434.

  • 28

    Zinn-Justin A, Marquet S, Hillaire D, Dessein A, Abel L, 2001. Genome search for additional human loci controlling infection levels by Schistosoma mansoni. Am J Trop Med Hyg 65 :754–758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Chan L, Bundy DA, Kan SP, 1994. Aggregation and predisposition to Ascaris lumbricoides and Trichuris trichiura at the familial level. Trans R Soc Trop Med Hyg 88 :46–48.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Chan L, Bundy DA, Kan SP, 1994. Genetic relatedness as a determinant of predisposition to Ascaris lumbricoides and Trichuris trichiura infection. Parasitology 108 :77–80.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    King CL, Malhotra I, Mungai P, Wamachi A, Kioko J, Muchiri E, Ouma JH, 2001. Schistosoma haematobium-induced urinary tract morbidity correlates with increased tumor necrosis factor-alpha and diminished interleukin-10 production. J Infect Dis 184 :1176–1182.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Kariuki HC, Mbugua G, Magak P, Bailey JA, Muchiri EM, Thiongo FW, King CH, Butterworth AE, Ouma JH, Blanton RE, 2001. Prevalence and familial aggregation of schistosomal liver morbidity in Kenya: evaluation by new ultrasound criteria. J Infect Dis 183 :960–966.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Muchiri EM, 1991. Association of water contact activities and risk of reinfection for S. haematobium after drug treatment in the Msambweni Area, Kenya. Epidemiology and Biostatistics. Cleveland, OH: Case Western Reserve University, 1–121.

    • PubMed
    • Export Citation
  • 34

    Sturrock RF, Kinyanjui H, Thiongo FW, Tosha S, Ouma JH, King CH, Koech D, Siongok TK, Mahmoud AA, 1990. Chemotherapy-based control of schistosomiasis haematobia. 3. Snail studies monitoring the effect of chemotherapy on transmission in the Msambweni area, Kenya. Trans R Soc Trop Med Hyg 84 :257–261.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Khoury MJ, Beaty TH, Cohen BH, 1993. Fundamentals of Genetic Epidemiology. New York: Oxford University Press.

    • PubMed
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 48 48 3
Full Text Views 350 6 0
PDF Downloads 59 5 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save