• 1

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 :97–106.

  • 2

    Kaslow DC, 1997. Transmission-blocking vaccines: uses and current status of development. Int J Parasitol 27 :183–189.

  • 3

    Carter R, 2001. Transmission blocking malaria vaccines. Vaccine 19 :2309–2314.

  • 4

    Stowers A, Carter R, 2001. Current developments in malaria transmission-blocking vaccines. Expert Opin Biol Ther 1 :619–628.

  • 5

    Tsuboi T, Tachibana M, Kaneko O, Torii M, 2003. Transmission-blocking vaccine of vivax malaria. Parasitol Int 52 :1–11.

  • 6

    Barr PJ, Green KM, Gibson HL, Bathurst IC, Quakyi IA, Kaslow DC, 1991. Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J Exp Med 174 :1203–1208.

    • Search Google Scholar
    • Export Citation
  • 7

    Kaslow DC, Bathurst IC, Lensen T, Ponnudurai T, Barr PJ, Keister DB, 1994. Saccharomyces cerevisiae recombinant Pfs25 adsorbed to alum elicits antibodies that block transmission of Plasmodium falciparum.Infect Immun 62 :5576–5580.

    • Search Google Scholar
    • Export Citation
  • 8

    Duffy PE, Kaslow DC, 1997. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect Immun 65 :1109–1113.

    • Search Google Scholar
    • Export Citation
  • 9

    Gozar MM, Price VL, Kaslow DC, 1998. Saccharomyces cerevisiae-secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice. Infect Immun 66 :59–64.

    • Search Google Scholar
    • Export Citation
  • 10

    Kaslow DC, Syin C, McCutchan TF, Miller LH, 1989. Comparison of the primary structure of the 25 kDa ookinete surface antigens of Plasmodium falciparum and Plasmodium gallinaceum reveal six conserved regions. Mol Biochem Parasitol 33 :283–287.

    • Search Google Scholar
    • Export Citation
  • 11

    Paton MG, Barker GC, Matsuoka H, Ramesar J, Janse CJ, Waters AP, Sinden RE, 1993. Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei.Mol Biochem Parasitol 59 :263–275.

    • Search Google Scholar
    • Export Citation
  • 12

    Tsuboi T, Cao Y-M, Kaslow DC, Shiwaku K, Torii M, 1997. Primary structure of a novel ookinete surface protein from Plasmodium berghei.Mol Biochem Parasitol 85 :131–134.

    • Search Google Scholar
    • Export Citation
  • 13

    Tsuboi T, Kaslow DC, Cao YM, Shiwaku K, Torii M, 1997. Comparison of Plasmodium yoelii ookinete surface antigens with human and avian malaria parasite homologues reveals two highly conserved regions. Mol Biochem Parasitol 87 :107–111.

    • Search Google Scholar
    • Export Citation
  • 14

    Tachibana M, Tsuboi T, Templeton TJ, Kaneko O, Torii M, 2001. Presence of three distinct ookinete surface protein genes, Pos25, Pos28- 1, and Pos28-2, in Plasmodium ovale.Mol Biochem Parasitol 113 :341–344.

    • Search Google Scholar
    • Export Citation
  • 15

    Tachibana M, Tsuboi T, Kaneko O, Khuntirat B, Torii M, 2002. Two types of Plasmodium ovale defined by SSU rRNA have distinct sequences for ookinete surface proteins. Mol Biochem Parasitol 122 :223–226.

    • Search Google Scholar
    • Export Citation
  • 16

    Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M, 1998. Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28, that are malaria transmission-blocking vaccine candidates. Mol Med 4 :772–782.

    • Search Google Scholar
    • Export Citation
  • 17

    Hisaeda H, Stowers AW, Tsuboi T, Collins WE, Sattabongkot JS, Suwanabun N, Torii M, Kaslow DC, 2000. Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect Immun 68 :6618–6623.

    • Search Google Scholar
    • Export Citation
  • 18

    Kumar S, Yadava A, Keister DB, Tian JH, Ohl M, Perdue-Greenfield KA, Miller LH, Kaslow DC, 1995. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mol Med 1 :325–332.

    • Search Google Scholar
    • Export Citation
  • 19

    Suwanabun N, Sattabongkot J, Tsuboi T, Torii M, Maneechai N, Rachapaew N, Yim-amnuaychok N, Punkitchar V, Coleman RE, 2001. Development of a method for the in vitro production of Plasmodium vivax ookinetes. J Parasitol 87 :928–930.

    • Search Google Scholar
    • Export Citation
  • 20

    Tsuboi T, Cao YM, Hitsumoto Y, Yanagi T, Kanbara H, Torii M, 1997. Two antigens on zygotes and ookinetes of Plasmodium yoelii and Plasmodium berghei that are distinct targets of transmission-blocking immunity. Infect Immun 65 :2260–2264.

    • Search Google Scholar
    • Export Citation
  • 21

    Sakihama N, Mitamura T, Kaneko A, Horii T, Tanabe K, 2001. Long PCR amplification of Plasmodium falciparum DNA extracted from filter paper blots. Exp Parasitol 97 :50–54.

    • Search Google Scholar
    • Export Citation
  • 22

    Kaslow DC, Quakyi IA, Keister DB, 1989. Minimal variation in a vaccine candidate from the sexual stage of Plasmodium falciparum.Mol Biochem Parasitol 32 :101–103.

    • Search Google Scholar
    • Export Citation
  • 23

    Shi YP, Alpers MP, Povoa MM, Lal AA, 1992. Single amino acid variation in the ookinete vaccine antigen from field isolates of Plasmodium falciparum.Mol Biochem Parasitol 50 :179–180.

    • Search Google Scholar
    • Export Citation
  • 24

    Hafalla JC, Santiago ML, Pasay MC, Ramirez BL, Gozar MM, Saul A, Kaslow DC, 1997. Minimal variation in the Pfs28 ookinete antigen from Philippine field isolates of Plasmodium falciparum.Mol Biochem Parasitol 87 :97–99.

    • Search Google Scholar
    • Export Citation
  • 25

    Kaslow DC, 1998. Acquired immunity to sexual stages. Sherman IW, ed. Malaria: Parasite Biology, Pathogenesis, and Protection. Washington, DC: American Society for Microbiology Press, 457–466.

  • 26

    Taylor D, Cloonan N, Mann V, Cheng Q, Saul A, 2000. Sequence diversity in rodent malaria of the Pfs28 ookinete surface antigen homologs. Mol Biochem Parasitol 110 :429–434.

    • Search Google Scholar
    • Export Citation
  • 27

    Breman JG, 2001. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64 :1–11.

    • Search Google Scholar
    • Export Citation
  • 28

    Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A, Rare L, Baisor M, Lorry K, Brown GV, Pye D, Irving DO, Smith TA, Beck HP, Alpers MP, 2002. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea. J Infect Dis 185 :820–827.

    • Search Google Scholar
    • Export Citation

 

 

 

 

BLOCKING OF TRANSMISSION TO MOSQUITOES BY ANTIBODY TO PLASMODIUM VIVAX MALARIA VACCINE CANDIDATES PVS25 AND PVS28 DESPITE ANTIGENIC POLYMORPHISM IN FIELD ISOLATES

View More View Less
  • 1 Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan; Department of Immunology and Parasitology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu, Ehime, Japan; Department of Immunology, College of Preclinical Medicine, China Medical University, Shenyang, China; Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Office of Vector Borne Disease Control 1, Saraburi, Thailand

We have previously demonstrated that mouse antisera against yeast-produced recombinant forms of the ookinete surface proteins of Plasmodium vivax (Pvs25 and Pvs28) blocks transmission of the homologous P. vivax (Sal I strain). In this study, we developed mouse and rabbit antisera against Pvs25 and Pvs28 and evaluated the efficacy of these vaccine candidates against natural isolates of P. vivax in Thailand. Although both Pvs25 and Pvs28 genes are polymorphic, sera from mice immunized using alum adjuvant completely inhibited oocyst development for most human isolates, whereas sera from rabbits immunized with either alum or Freund’s adjuvant were partially inhibitory. All inhibition occurred in an antibody dose dependent fashion. Data from this study clearly demonstrates that antibodies raised against Sal I-based vaccines overcome the genetic polymorphism of Pvs25 and Pvs28 present in natural isolates of P. vivax, suggesting the wide range applicability of Sal I based vaccines.

Author Notes

Reprint requests: Takafumi Tsuboi, Cell-Free Science and Technology Research Center, Ehime University, 3 Bunkyocho, Matsuyama, Ehime 790-8577, Japan, Telephone +81-89-927-8277, Fax +81-89-927-9941, E-mail: tsuboi@m.ehime-u.ac.jp.
Save