• 1

    Young DG, Duncan MA, 1994. Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memoirs of the American Entomological Institute, No. 54. Gainesville, FL; Association Publications, American Entomological Institute.

  • 2

    Uribe S, 1999. The status of the Lutzomyia longipalpis species complex and possible implications for Leishmania transmission. Mem Inst Oswaldo Cruz 94 :729–734.

    • Search Google Scholar
    • Export Citation
  • 3

    Arias JR, Monteiro PS, Zicker F, 1996. The reemergence of visceral leishmaniasis in Brazil. Emerg Infect Dis 2 :145–146.

  • 4

    Franke CR, Staubach C, Ziller M, Schlüter H, 2002. Trends in the temporal and spatial distribution of visceral and cutaneous leishmaniasis in the state of Bahia, Brazil, from 1985 to 1999. Trans R Soc Trop Med Hyg 96 :236–241.

    • Search Google Scholar
    • Export Citation
  • 5

    Morrison AC, Munstermann, LE, Ferro C, Pardo R, Torres M, 1995. Ecological and genetic studies of Lutzomyia longipalpis in a central Colombian focus of visceral leishmaniasis. Bol Dir Malariol Saneamiento Ambiental 35 (Suppl 1):235–248.

    • Search Google Scholar
    • Export Citation
  • 6

    Mukhopadhyay J, Rangel EF, Ghosh K, Munstermann LE, 1997. Patterns of genetic variability in colonized strains of Lutzomyia longipalpis (Diptera: Psychodidae) and its consequences. Am J Trop Med Hyg 57 :216–221.

    • Search Google Scholar
    • Export Citation
  • 7

    Munstermann LE, 1994. Unexpected genetic consequences of colonization and inbreeding: allozyme tracking in Culicidae (Diptera). Ann Entomol Soc Am 87 :157–164.

    • Search Google Scholar
    • Export Citation
  • 8

    Secondino NFC, Braga EM, Pimenta PFP, 1999. Colonization of Lutzomyia longipalpis: morphological study and susceptibility to infection by Leishmania spp. Mem Inst Oswaldo Cruz 94 (Suppl II):253.

    • Search Google Scholar
    • Export Citation
  • 9

    Lanzaro GC, Ostrovska K, Herrero MV, Lawyer PG, Warburg A, 1993. Lutzomyia longipalpis is a species complex: genetic divergence and interspecific hybrid sterility among three populations. Am J Trop Med Hyg 48 :839–847.

    • Search Google Scholar
    • Export Citation
  • 10

    Arrivillaga JC, Rangel YN, Oviedo M, Feliciangeli MD, 2000. Correlated morphologic and genetic diversity among Lutzomyia longipalpis (Diptera: Psychodidae) collections in Ven-ezuela. J Am Mosq Control Assoc 16 :171–174.

    • Search Google Scholar
    • Export Citation
  • 11

    Mutebi J-P, Tripet F, Alexander JB, Lanzaro GC, 2002. Genetic differentiation among populations of Lutzomyia longipalpis (Diptera: Psychodidae) in Central and South America. Ann Entomol Soc Am 95 :740–752.

    • Search Google Scholar
    • Export Citation
  • 12

    Lampo M, Torgerson D, Márquez LM, Rinaldi M, Garcia CZ, Arab A, 1999. Occurrence of sibling species of Lutzomyia lon-gipalpis (Diptera: Psychodidae) in Venezuela: first evidence from reproductively isolated sympatric populations. Am J Trop Med Hyg 61 :1004–1009.

    • Search Google Scholar
    • Export Citation
  • 13

    Mangabeira O, 1969. Classification and biology of the Phleboto-mus of Ceará. Rev Bras Malariol Doenças Trop 21 :3–26.

  • 14

    Ward RD, Ribeiro AL, Ready PD, Murtagh A, 1983. Reproductive isolation between different forms of Lutzomyia longipal-pis (Lutz & Neiva), (Diptera: Psychodidae), the vector of Leishmania donovani chagasi Cunha & Chagas and its significance to kala-azar distribution in South America. Mem Inst Oswaldo Cruz 78 :269–280.

    • Search Google Scholar
    • Export Citation
  • 15

    Mukhopadhyay J, Ghosh K, Azevedo ACR, Rangel EF, Mun-stermann LE, 1998. Genetic polymorphism of morphological and biochemical characters in a Natal, Brazil, population of Lutzomyia longipalpis (Diptera: Psychodidae). J Am Mosq Control Assoc 14 :277–282.

    • Search Google Scholar
    • Export Citation
  • 16

    Mutebi JP, Alexander B, Sherlock I, Wellington J, Souza AA, Shaw J, Rangel EF, Lanzaro GC, 1999. Breeding structure of the sand fly Lutzomyia longipalpis (Lutz & Neiva) in Brazil. Am J Trop Med Hyg 61 :149–157.

    • Search Google Scholar
    • Export Citation
  • 17

    Azevedo ACR, Monteiro FA, Cabello PH, de Souza NA, Rosa-Freitas MG, Rangel EF, 2000. Studies on populations of Lutzomyia longipalpis (Lutz & Neiva), 1912 (Diptera: Psychodidae: Phlebotominae) in Brazil. Mem Inst Oswaldo Cruz 95 :305–322.

    • Search Google Scholar
    • Export Citation
  • 18

    Mukhopadhyay J., Ghosh K, Rangel EF, Munstermann LE, 1998. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 59 :893–901.

    • Search Google Scholar
    • Export Citation
  • 19

    Yin H, Mutebi JP, Marriott S, Lanzaro GC, 1999. Metaphase karyotypes and G-banding in sand flies of the Lutzomyia lon-gipalpis complex. Med Vet Entomol 13 :72–77.

    • Search Google Scholar
    • Export Citation
  • 20

    Soto SIU, Lehmann T, Rowton ED, Velez ID, Porter CH, 2001. Speciation and population structure in the morphospecies Lutzomyia longipalpis (Lutz & Neiva) as derived from the mitochondrial ND4 gene. Mol Phylogenet Evol 18 :84–93.

    • Search Google Scholar
    • Export Citation
  • 21

    Oliveira SG, Bottecchia M, Bauzer LGSR, Souza NA, Ward RD, Kyriacou CP, Peixoto AA, 2001. Courtship song genes and speciation in sand flies. Mem Inst Oswaldo Cruz 96 :403–405.

    • Search Google Scholar
    • Export Citation
  • 22

    Bauzer LGSR, Gesto JSM, Souza NA, Ward RD, Hamilton JGC, Kyriacou CP, Peixoto AA, 2002. Molecular divergence in the period gene between two putative sympatric species of the Lutzomyia longipalpis complex. Mol Biol Evol 19 :1624–1627.

    • Search Google Scholar
    • Export Citation
  • 23

    Bauzer LGSR, Souza NA, Ward RD, Kyriacou CP, Peixoto AA, 2002. The period gene and genetic differentiation between three Brazilian populations of Lutzomyia longipalpis. Insect Mol Biol 11 :315–324.

    • Search Google Scholar
    • Export Citation
  • 24

    Arrivillaga JC, Norris DE, Feliciangeli MD, Lanzaro GC, 2002. Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondiral DNA sequences. Infect Genet Evol 2 :83–95.

    • Search Google Scholar
    • Export Citation
  • 25

    Koekemoer LL, Lochouarn L, Hunt RH, Coetzee M, 1999. Single-strand conformation polymorphism analysis for identification of four members of the Anopheles funestus Diptera: Culicidae group. J Med Entomol 36 :125–130.

    • Search Google Scholar
    • Export Citation
  • 26

    Norris DE, Klompen JSH, Keirans JE, Lane RS, Piesman J, Black WCIV, 1997. Taxonomic status of Ixodes neotomae and I. spinipalpis (Acari: Ixodidae) based on mitochondrial DNA evidence. J Med Entomol 34 :696–703.

    • Search Google Scholar
    • Export Citation
  • 27

    Brown NM, 1985. The mitochondrial genome of animals. MacIntyre R, ed. Molecular Evolutionary Genetics. New York, NY: Plenum Publishing, 95–138.

  • 28

    Esposti MD, DeVries S, Crimi M, Ghelli A, Patarnello T, Meyer A, 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochim Biophys Acta 1143 :243–271.

    • Search Google Scholar
    • Export Citation
  • 29

    Ishikawa EAY, Ready PD, de Souza AA, Day JC, Rangel EF, Davies CR, Shaw JJ, 1999. A mitochondrial DNA phylogeny indicates close relationships between populations of Lutzomyia whitmani (Diptera: Psychodidae, Phlebotominae) from the rain-forest regions of Amazonia and northeast Brazil. Mem Inst Oswaldo Cruz 94 :339–345.

    • Search Google Scholar
    • Export Citation
  • 30

    Hodgkinson VH, Birungi J, Haghpanah M, Joshi S, Munstermann LE, 2002. Rapid identification of mitochondrial cytochrome b haplotypes by single strand conformation polymorphism in Lutzomyia longipalpis (Diptera: Psychodidae) populations. J Med Entomol 39: 689–694.

    • Search Google Scholar
    • Export Citation
  • 31

    Bender W, Spierer P, Hogness DS, 1983. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 168 :17–33.

    • Search Google Scholar
    • Export Citation
  • 32

    Beard CB, Hamm DM, Collins FH, 1993. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2 :103–124.

    • Search Google Scholar
    • Export Citation
  • 33

    Gilbert DG, 1993. SeqApp Version 1.9. A Biosequence Editor and Analysis Application. Bloomington, IN: Biocomputing Office, Biology Department, Indiana University.

  • 34

    Maddison WP, Maddison DR, 1992, 1999. MacClade: Analysis of Phylogeny and Character Evolution. Sunderland, MA: Sinauer Associates.

  • 35

    Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.

  • 36

    Hudson RR, Boos DD, Kaplan NL, 1992. A statistical test for detecting geographic subdivision. Mol Biol Evol 9 :138–151.

  • 37

    Schneider S, Kueffer JM, Roessli D, Excoffier L, 1997. Arlequin, Version 1.1. A Software for Population Genetic Data Analysis. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva.

  • 38

    Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 :111–120.

    • Search Google Scholar
    • Export Citation
  • 39

    Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 :479–491.

    • Search Google Scholar
    • Export Citation
  • 40

    Avise JC, Ball RM, Arnold J, 1988. Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA polymorphism and inbreeding theory for neutral mutations. Mol Biol Evol 5 :331–344.

    • Search Google Scholar
    • Export Citation
  • 41

    Ready PD, Day JC, Souza AA, Rangel EF, Davies CR, 1997. Mitochondrial DNA characterization of populations of Lutzomyia whitmani (Diptera: Psychodidae) incriminated in the peridomestic and sylvatic transmission of Leishmania species in Brazil. Bull Entomol Res 87 :187–195.

    • Search Google Scholar
    • Export Citation
  • 42

    Ready PD, de Souza AA, Rebelo JMM, Day JC, Silveira FT, Campbell-Lendrum D, Davies CR, Costa JML, 1998. Phylogenetic species and domesticity of Lutzomyia whitmani at the south-east boundary of Amazonian Brazil. Trans R Soc Trop Med Hyg 92 :159–160.

    • Search Google Scholar
    • Export Citation
  • 43

    Templeton AR, 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7 :381–397.

    • Search Google Scholar
    • Export Citation
  • 44

    Templeton AR, Routman E, Phillips CA, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140 :767–782.

    • Search Google Scholar
    • Export Citation
  • 45

    Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC, 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18 :489–522.

    • Search Google Scholar
    • Export Citation
  • 46

    Bigarella JJ, Andrade-Lima D, 1982. Paleoenvironmental changes in Brazil. Prance GT, ed. Biological Diversification in the Tropics. New York: Columbia University Press, 27–40.

  • 47.

    Whitmore TC, Prance GT, 1987. Biogeography and Quaternary History in Tropical America. Oxford, United Kingdom: Clarendon Press.

  • 48

    Prous A, Fogaça E, 1999. Archaeology of the Pleistocene-Holocene boundary in Brazil. Quarternary Int 53–54 :21–41.

  • 49

    Andrade-Lima D, 1982. Present-day forest refuges in Northeastern Brazil. GT Prance, ed. Biological Diversification in the Tropics. New York: Columbia University Press, 245–251.

  • 50

    Colinvaux PA, Irion G, Räsänen ME, Bush MB, Nunes de Mello JAS, 2001. A paradigm to be discarded: geological and paleoecological data falsify the HAFFER & PRANCE refuge hypothesis of Amazonian speciation. Amazoniana 16 :609–646.

    • Search Google Scholar
    • Export Citation
  • 51

    Haffer J, Prance GT, 2001. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16 :579–607.

    • Search Google Scholar
    • Export Citation
  • 52

    Avise JC, Neigel JE, Arnold J, 1984. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20 :99–105.

    • Search Google Scholar
    • Export Citation
  • 53

    Ledru P, 1993. Late quaternary environmental and climatic changes in central Brazil. Quarternary Res 39 :90–98.

  • 54.

    Prance GT, ed. 1982. Biological Diversification in the Tropics. New York: Columbia University Press.

 
 
 

 

 
 
 

 

 

 

 

 

 

MITOCHONDRIAL CYTOCHROME B VARIATION IN POPULATIONS OF THE VISCERAL LEISHMANIASIS VECTOR LUTZOMYIA LONGIPALPIS ACROSS EASTERN BRAZIL

View More View Less
  • 1 Biology Department, Fairfield University, Fairfield, Connecticut; Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut; United States Army Center for Health Promotion and Preventative Medicine, Fort Lewis, Washington; Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil

A population analysis of peridomestic, light-trapped, field specimens of the phlebotomine sand fly Lutzomyia longipalpis was targeted to six locations representing a geographic transect across eastern Brazil. Mitochondrial cytochrome b gene sequences established the pattern of genetic variation among the populations. Alignment of a 261-basepair region at the 3′end of cytochrome b identified 30 haplotypes and 21 segregating sites from 78 sand flies. Pairwise comparisons indicated statistically significant population structuring between northern and southern populations, as well as structuring among the southern populations. Prominent spatial clustering was evident for two of the populations in a minimum spanning network of the haplotypes, but sequence divergence was not sufficient to indicate cryptic species.

Author Notes

Reprint requests: Leonard E. Munstermann, Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034.
Save