• 1

    Sachs J, Malaney P, 2002. The economic and social burden of malaria. Nature 415 :680–685.

  • 2

    Gillies MT, de Meillon B, 1968. The Anophelinae of Africa South of the Sahara. Johannesburg, South Africa: The South African Institute for Medical Research.

  • 3

    Fontenille D, Lochouarn L, Diagne N, Sokhna C, Lemasson JJ, Diatta M, Konate L, Faye F, Rogier C, Trape JF, 1997. High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56 :247–253.

    • Search Google Scholar
    • Export Citation
  • 4

    Mbogo CM, Kabiru EW, Glass GE, Forster D, Snow RW, Khamala CP, Ouma JH, Githure JI, Marsh K, Beier JC, 1999. Vector-related case-control study of severe malaria in Kilifi District, Kenya. Am J Trop Med Hyg 60 :781–785.

    • Search Google Scholar
    • Export Citation
  • 5

    Minakawa N, Githure JI, Beier JC, Yan G, 2001. Anopheline mosquito survival strategies during the dry period in western Kenya. J Med Entomol 38 :388–392.

    • Search Google Scholar
    • Export Citation
  • 6

    Mbogo CM, Mwagangi JM, Nzovu J, Gu W, Yan G, Gunter JT, Swalm C, Keating J, Regens JL, Shililu JI, Githure JI, Beier JC, 2003. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68 :734–742.

    • Search Google Scholar
    • Export Citation
  • 7

    Collins FH, Besansky NJ, 1994. Vector biology and the control of malaria in Africa. Science 264: 1874–1875.

  • 8

    Crampton JM, 1994. Molecular studies of insect vectors of malaria. Adv Parasitol 34 :1–31.

  • 9

    Lehmann T, Besansky NJ, Hawley WA, Fahey TG, Kamau L, Collins FH, 1997. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol Ecol 6 :243–253.

    • Search Google Scholar
    • Export Citation
  • 10

    Kamau L, Lehmann T, Hawley WA, Orago AS, Collins FH, 1998. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya: a comparison with Kilifi in coastal Kenya. Am J Trop Med Hyg 58 :64–69.

    • Search Google Scholar
    • Export Citation
  • 11

    Lehmann T, Hawley WA, Grebert H, Collins FH, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15 :264–276.

    • Search Google Scholar
    • Export Citation
  • 12

    Kamau L, Mukabana WR, Hawley WA, Lehmann T, Irungu LW, Orago AA, Collins FH, 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol 8 :287–297.

    • Search Google Scholar
    • Export Citation
  • 13

    Kamau L, Hunt R, Coetzee M, 2002. Analysis of the population structure of Anopheles funestus (Diptera: Culicidae) from western and coastal Kenya using paracentric chromosomal inversion frequencies. J Med Entomol 39 :78–83.

    • Search Google Scholar
    • Export Citation
  • 14

    Gillies M, Coetzee M, 1987. A Supplement to the Anophelinae of Africa, South of the Dahara (Afrotropical Region). Johannesburg, South Africa: The South African Institute for Medical Research.

  • 15

    Wilkes TJ, Matola YG, Charlwood JD, 1996. Anopheles rivulorum, a vector of human malaria in Africa. Med Vet Entomol 10 :108–110.

  • 16

    De Meillon B, van Eeden GJ, Coetzee L, Coetzee M, Meiswinkel R, du Toit CLN, Hansford CF, 1977. Observations on a species of the Anopheles funestus subgroup, a suspected exophilic vector of malaria parasites in northeastern Transvaal, South Africa. Mosq News 37 :657–661.

    • Search Google Scholar
    • Export Citation
  • 17

    Lochouarn L, Dia I, Boccolini D, Coluzzi M, Fontenille D, 1998. Bionomical and cytogenetic heterogeneities of Anopheles funestus in Senegal. Trans R Soc Trop Med Hyg 92 :607–612.

    • Search Google Scholar
    • Export Citation
  • 18

    Dia I, Lochouarn L, Boccolini D, Costantini C, Fontenille D, 2000. Spatial and temporal variations of the chromosomal inversion polymorphism of Anopheles funestus in Senegal. Parasite 7 :179–184.

    • Search Google Scholar
    • Export Citation
  • 19

    Boccolini D, Sabatini A, Sanogo E, Sagnon N, Coluzzi M, Costantini C, 1994. Chromosomal and vectorial heterogeneities in Anopheles funestus from Burkina Faso, West Africa. Parassitologia 36 :20.

    • Search Google Scholar
    • Export Citation
  • 20

    Costantini C, Sagnon NF, Ilboudo-Sanogo E, Coluzzi M, Boccolini D, 1999. Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso. Parassitologia 41 :595–611.

    • Search Google Scholar
    • Export Citation
  • 21

    Mukabayire O, Boccolini D, Lochouarn L, Fontenille D, Besansky NJ, 1999. Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Mol Ecol 8 :289–297.

    • Search Google Scholar
    • Export Citation
  • 22

    Lanzaro GC, Zheng L, Toure YT, Traore SF, Kafatos FC, Vernick KD, 1995. Microsatellite DNA and isozyme variability in a west African population of Anopheles gambiae. Insect Mol Biol 4 :105–112.

    • Search Google Scholar
    • Export Citation
  • 23

    Lehmann T, Hawley WA, Collins FH, 1996. An evaluation of evolutionary constraints on microsatellite loci using null alleles. Genetics 144 :1155–1163.

    • Search Google Scholar
    • Export Citation
  • 24

    Walton C, Thelwell NJ, Priestman A, Butlin RK, 1998. The use of microsatellites to study gene flow in natural populations of Anopheles malaria vectors in Africa: potential and pitfalls. J Am Mosq Control Assoc 14 :266–272.

    • Search Google Scholar
    • Export Citation
  • 25

    Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H, 1999. Population structure in the malaria vector, Anopheles arabiensis Patton, in east Africa. Heredity 83 :408–417.

    • Search Google Scholar
    • Export Citation
  • 26

    Sinkins SP, Hackett BJ, Costantini C, Vulule J, Ling YY, Collins FH, Besansky NJ, 2000. Isolation of polymorphic microsatellite loci from the malaria vector Anopheles funestus. Mol Ecol 9 :490–492.

    • Search Google Scholar
    • Export Citation
  • 27

    Sharakhov IV, Braginets O, Mbogo CM, Yan G, 2001. Isolation and characterization of trinucleotide microsatellites in African malaria mosquito Anopheles funestus. Mol Ecol Notes 1 :289–292.

    • Search Google Scholar
    • Export Citation
  • 28

    Cohuet A, Simard F, Berthomieu A, Raymond M, Fontenille D, Weill M, 2002. Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus. Mol Ecol Notes 2 :498–500.

    • Search Google Scholar
    • Export Citation
  • 29

    Severson DW, 1997. RELP analysis of insect genomes. Crampton J, Beard CB, Louis C, eds. Molecular Biology of Insect Disease Vectors: A Methods Manual. New York: Chapman & Hall, 309–320.

  • 30

    Koekemoer LL, Lochouarn L, Hunt RH, Coetzee M, 1999. Single-strand conformation polymorphism analysis for identification of four members of the Anopheles funestus (Diptera: Culicidae) group. J Med Entomol 36 :125–130.

    • Search Google Scholar
    • Export Citation
  • 31

    Raymond M, Rousset F, 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 :248–249.

    • Search Google Scholar
    • Export Citation
  • 32

    Weir B, 1990. Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Associates, Inc.

  • 33

    Yan G, Chadee DD, Severson DW, 1998. Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti. Genetics 148 :793–800.

    • Search Google Scholar
    • Export Citation
  • 34

    Goudet J, 1995. FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86 :485–486.

  • 35

    Miller M, 1997. Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author.

  • 36

    Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 :457–462.

  • 37

    Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH, 1999. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 90 :613–621.

    • Search Google Scholar
    • Export Citation
  • 38

    Minakawa N, Sonye G, Mogi M, Githeko A, Yan G, 2002. The effect of climatic factors on the distribution and abundance of malaria vectors in Kenya. J Med Entomol 39 :833–841.

    • Search Google Scholar
    • Export Citation
  • 39

    Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population Structure of Anopheles gambiae in Africa. J Hered 94 :133–147.

    • Search Google Scholar
    • Export Citation
  • 40

    Balloux F, Brunner H, Lugon-Moulin N, Hausser J, Goudet J, 2000. Microsatellites can be misleading: an empirical and simulation study. Evolution 54 :1414–1422.

    • Search Google Scholar
    • Export Citation
  • 41

    Estoup A, Tailliez C, Cornuet JM, Solignac M, 1995. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 12 :1074–1084.

    • Search Google Scholar
    • Export Citation
  • 42

    Wright S, 1943. Isolation by distance. Genetics 28 :114–138.

Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 144 29
PDF Downloads 88 34 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

POPULATION GENETIC STRUCTURE OF THE AFRICAN MALARIA MOSQUITO ANOPHELES FUNESTUS IN KENYA

OLGA P. BRAGINETSDepartment of Biologic Sciences, State University of New York at Buffalo, Buffalo, New York; Centre for Geographic Medicine Research, Kenya Medical Research Institute, Kilifi, Kenya

Search for other papers by OLGA P. BRAGINETS in
Current site
Google Scholar
PubMed
Close
,
NOBORU MINAKAWADepartment of Biologic Sciences, State University of New York at Buffalo, Buffalo, New York; Centre for Geographic Medicine Research, Kenya Medical Research Institute, Kilifi, Kenya

Search for other papers by NOBORU MINAKAWA in
Current site
Google Scholar
PubMed
Close
,
CHARLES M. MBOGODepartment of Biologic Sciences, State University of New York at Buffalo, Buffalo, New York; Centre for Geographic Medicine Research, Kenya Medical Research Institute, Kilifi, Kenya

Search for other papers by CHARLES M. MBOGO in
Current site
Google Scholar
PubMed
Close
, and
GUIYUN YANDepartment of Biologic Sciences, State University of New York at Buffalo, Buffalo, New York; Centre for Geographic Medicine Research, Kenya Medical Research Institute, Kilifi, Kenya

Search for other papers by GUIYUN YAN in
Current site
Google Scholar
PubMed
Close
Restricted access

Anopheles funestus Giles is a major malaria vector in Africa, but little is known about the genetic structure of natural populations. In this study, microsatellite markers were used to investigate the genetic structure of A. funestus populations from Kenya. Two populations from western Kenya 80 km apart and two from coastal Kenya 50 km apart were collected and examined for allelic variation at five trinucleotide microsatellite loci. We found A. funestus Giles was the predominant species (>98%) in the A. funestus group in these populations. The western Kenya populations exhibited higher genetic diversity than the coastal populations. No significant genetic structure for populations within the coastal or western Kenya regions was detected. However, population genetic differentiation between the two regions was high (FST = 0.208, RST = 0.158), approximately two-fold higher than A. gambiae populations from the same area. The results suggest that the minimum area associated with a deme of A. funestus in western or coastal Kenya is larger than 50 km in diameter. The Great Rift Valley in east Africa, high-elevation mountains in western Kenya, and the vast arid area east to the Great Rift Valley may all play a role in restricting A. funestus gene flow between coastal and western Kenya.

Author Notes

Reprint requests: Guiyun Yan, Department of Biologic Sciences, State University of New York at Buffalo, Buffalo, NY 14260, Telephone: 716-645-2363 extension 121, Fax: 716-645-2975, E-mail: gyan@acsu.buffalo.edu.
Save