• 1

    Hudson AT, 1993. Atovaquone–a novel broad-spectrum anti-infective drug. Parasitol Today 9 :66–68.

  • 2

    Basco LK, Ramiliarisoa O, Le Bras J, 1995. In vitro activity of atovaquone against the African isolates and clones of Plasmodium falciparum.Am J Trop Med Hyg 53 :388–391.

    • Search Google Scholar
    • Export Citation
  • 3

    Gay F, Bustos D, Traore B, Jardinel C, Southammavong M, Ciceron L, Danis MM, 1997. In vitro response of Plasmodium falciparum to atovaquone and correlation with other antimalarials: comparison between African and Asian strains. Am J Trop Med Hyg 56 :315–317.

    • Search Google Scholar
    • Export Citation
  • 4

    Chiodini PL, Conlon CP, Hutchinson DBA, Farquhar JA, Hall AP, Peto TEA, Birley H, Warrell DA, 1995. Evaluation of atovaquone in the treatment of patients with uncomplicated Plasmodium falciparum malaria. J Antimicrob Chemother 36 :1073–1078.

    • Search Google Scholar
    • Export Citation
  • 5

    Looareesuwan S, Viravan C, Webster HK, Kyle DE, Canfield CJ, 1996. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg 54 :62–66.

    • Search Google Scholar
    • Export Citation
  • 6

    Canfield CJ, Pudney M, Gutteridge WE, 1995. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro.Exp Parasitol 80 :373–381.

    • Search Google Scholar
    • Export Citation
  • 7

    Srivastava I, Vaidya A, 1999. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 43 :1334–1339.

    • Search Google Scholar
    • Export Citation
  • 8

    Radloff PD, Philipps J, Nkeyi M, Hutchinson D, Kremsner PG, 1996. Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet 347 :1511–1514.

    • Search Google Scholar
    • Export Citation
  • 9

    de Alencar FEC, Cerutti C Jr, Durlacher RR, Boulos M, Alves FP, Milhous W, Pang LW, 1997. Atovaquone and proguanil for the treatment of malaria in Brazil. J Infect Dis 175 :1544–1547.

    • Search Google Scholar
    • Export Citation
  • 10

    Lell B, Luckner D, Ndjave M, Scott T, Kremsner PG, 1998. Randomised placebo-controlled study of atovaquone plus proguanil for malaria prophylaxis in children. Lancet 351 :709–713.

    • Search Google Scholar
    • Export Citation
  • 11

    Sabchareon A, Attanath P, Phanuaksook P, Chanthavanich P, Poonpanich Y, Mookmanee D, Chongsuphajaisiddhi T, Sadler BM, Hussein Z, Canfield CJ, Hutchinson DBA, 1998. Efficacy and pharmacokinetics of atovaquone and proguanil in children with multidrug-resistant Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 92 :201–206.

    • Search Google Scholar
    • Export Citation
  • 12

    Shanks GD, Gordon DM, Klotz FW, Aleman GM, Oloo AJ, Sadie D, Scott TR, 1998. Efficacy and safety of atovaquone/proguanil as suppressive prophylaxis for Plasmodium falciparum malaria. Clin Infect Dis 27 :494–499.

    • Search Google Scholar
    • Export Citation
  • 13

    Bustos D, Canfield C, Canete-Miguel E, Hutchinson D, 1999. Atovaquone-proguanil compared with chloroquine and chloroquine-sulfadoxine-pyrimethamine for treatment of acute Plasmodium falciparum malaria in the Philippines. J Infect Dis 179 :1587–1590.

    • Search Google Scholar
    • Export Citation
  • 14

    Looareesuwan S, Chulay J, Canfield C, Hutchinson D, 1999. Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Am J Trop Med Hyg 60 :533–541.

    • Search Google Scholar
    • Export Citation
  • 15

    Shapiro T, Ranasinha C, Kumar N, Barditch-Crovo P, 1999. Prophylactic activity of atovaquone against Plasmodium falciparum in humans. Am J Trop Med Hyg 60 :831–836.

    • Search Google Scholar
    • Export Citation
  • 16

    Sukwa T, Mulenga M, Chisdaka N, Roskell N, Scott T, 1999. A randomized, double-blind, placebo-controlled field trial to determine the efficacy and safety of Malarone (atovaquone/proguanil) for the prophylaxis of malaria in Zambia. Am J Trop Med Hyg 60 :521–525.

    • Search Google Scholar
    • Export Citation
  • 17

    Olukayode Oyediran ABO, Ddumba EM, Ochola SA, Lucas AO, Koporc K, Dowdle WR, 2002. A public-private partnership for malaria control: lessons from the Malarone Donation Programme. Bull World Health Organ 80 :817–821.

    • Search Google Scholar
    • Export Citation
  • 18

    Fry M, Pudney M, 1992. Site of action of the antimalarial hydroxynaphthoquinone 2-[trans-4-(4’-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol 43 :1545–1553.

    • Search Google Scholar
    • Export Citation
  • 19

    Vaidya AB, Lashgari MS, Pologe LG, Morrisey J, 1993. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 58 :33–42.

    • Search Google Scholar
    • Export Citation
  • 20

    Srivastava IK, Rottenberg H, Vaidya AB, 1997. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272 :3961–3966.

    • Search Google Scholar
    • Export Citation
  • 21

    Srivastava I, Morrisey J, Darrouzet E, Daldal F, Vaidya A, 1999. Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33 :704–711.

    • Search Google Scholar
    • Export Citation
  • 22

    Syafruddin D, Siregar JE, Marzuki S, 1999. Mutations in the cytochrome b gene of Plasmodium berghei conferring resistance to atovaquone. Mol Biochem Parasitol 104 :185–194.

    • Search Google Scholar
    • Export Citation
  • 23

    Korsinczky M, Chen NH, Kotecka B, Saul A, Rieckmann K, Cheng Q, 2000. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44 :2100–2108.

    • Search Google Scholar
    • Export Citation
  • 24

    Bloland PB, Kazembe PN, Watkins WM, Doumbo OK, Nwanyanwu OC, Ruebush TK, 1997. Malarone-donation programme in Africa. Lancet 350 :1624–1625.

    • Search Google Scholar
    • Export Citation
  • 25

    Mount DL, Nahlen BL, Patchen LC, Churchill FC, 1989. Adaptations of the Saker-Solomons test: Simple, reliable colorimetric field assays for chloroquine and its metabolites in urine. Bull World Health Organ 67 :295–300.

    • Search Google Scholar
    • Export Citation
  • 26

    Basco LK, Ringwald P, 2000. Molecular epidemiology of malaria in Yaounde, Cameroon. VI. Sequence variations in the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene and in vitro resistance to pyrimethamine and cycloguanil. Am J Trop Med Hyg 62 :271–276.

    • Search Google Scholar
    • Export Citation
  • 27

    Gassis S, Rathod PK, 1996. Frequency of drug resistance in Plasmodium falciparum: A nonsynergistic combination of 5-fluo-roorotate and atovaquone suppresses in vitro resistance. Antimicrob Agents Chemother 40 :914–919.

    • Search Google Scholar
    • Export Citation
  • 28

    Safwat G, Rathod PK, 1996. Frequency of drug resistance in Plasmodium falciparum: a nonsynergistic combination of 5-fluoroorotate and atovaquone suppresses in vitro resistance. Antimicrob Agents Chemother 40 :914–919.

    • Search Google Scholar
    • Export Citation
  • 29

    Rathod PK, McErlean T, Lee PC, 1997. Variations in frequencies of drug resistance in Plasmodium falciparum.Proc Natl Acad Sci USA 94 :9389–9393.

    • Search Google Scholar
    • Export Citation
  • 30

    Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G, 2002. Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria. Malaria J 1: 1 (www.malariajournal.com/content/1/1/1)

  • 31

    Färnert A, Lindberg J, Gil P, Swedberg G, Berqvist Y, Thapar MM, Lindergardh N, Berezcky S, Björkman A, 2003. Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: case reports. BMJ 326 :628–629.

    • Search Google Scholar
    • Export Citation
  • 32

    Schwöbel B, Alifrangis M, Salanti A, Jelinek T, 2003. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malaria J 2: 5 (www.malariajournal.com/content/2/1/5).

  • 33

    McIntosh MT, Srivastava R, Vaidya AB, 1998. Divergent evolutionary constraints on mitochondrial and nuclear genomes of malaria parasites. Mol Biochem Parasitol 95 :69–80.

    • Search Google Scholar
    • Export Citation
  • 34

    Sharma I, Rawat DS, Pasha ST, Biswas S, Sharma YD, 2001. Complete nucleotide sequence of the 6 kb element and conserved cytochrome b gene sequences among Indian isolates of Plasmodium falciparum.Int J Parasitol 31 :1107–1113.

    • Search Google Scholar
    • Export Citation

 

 

 

 

MOLECULAR EPIDEMIOLOGY OF MALARIA IN CAMEROON. XVII. BASELINE MONITORING OF ATOVAQUONE-RESISTANT PLASMODIUM FALCIPARUM BY IN VITRO DRUG ASSAYS AND CYTOCHROME B GENE SEQUENCE ANALYSIS

View More View Less
  • 1 Unité de Recherche Paludologie Afro-Tropicale, Institut de Recherche pour le Développement and Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaounde, Cameroon

Atovaquone is a new broad-spectrum antiprotozoal drug with high in vitro activity against multidrug-resistant Plasmodium falciparum. Its specific action against protozoans is based on the inhibition of the parasite cytochrome bc1 complex of the mitochondrial electron transport system. Protozoans may develop atovaquone resistance by the selection of a mutant cytochrome b gene. With the increasing availability of atovaquone-proguanil combination for prophylaxis and treatment of malarial infections, it is necessary to establish baseline data on atovaquone sensitivity before the drug is introduced massively in an endemic region. For this purpose, the activity of atovaquone was assessed indirectly by in vitro drug sensitivity assays with several serum substitutes and DNA sequencing of the cytochrome b gene. Using the standard in vitro assay procedures with 10% human serum, the geometric mean 50% inhibitory concentration (IC50) for atovaquone was calculated to be 1.15 nM (range = 0.460–4.17 nM), while the use of 10% fetal calf serum resulted in lower IC50s (geometric mean = 0.575, range = 0.266–2.20 nM). The use of Albumax, a lipid-enriched bovine albumin, over the same concentration range (0.25–16 nM) showed poor results. None of the 37 isolates with an atovaquone IC50 < 4.17 nM displayed any mutation. Further monitoring of atovaquone-resistant P. falciparum is warranted for the rational use of this new antimalarial drug.

Save