• 1

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 (Suppl):97–106.

  • 2

    Babiker HA, Walliker D, 1997. Current views on the population structure of Plasmodium falciparum: implications for control. Parasitol Today 13 :262–267.

    • Search Google Scholar
    • Export Citation
  • 3

    Awadalla P, Walliker D, Babiker H, Mackinnon M, 2001. The question of Plasmodium falciparum population structure. Trends Parasitol 17 :351–353.

    • Search Google Scholar
    • Export Citation
  • 4

    Kirchgatter K, del Portillo HA, 1998. Molecular analysis of Plasmodium vivax relapses using the MSP1 molecule as a genetic marker. J Infect Dis 177 :511–515.

    • Search Google Scholar
    • Export Citation
  • 5

    Rosenberg R, Wirtz RA, Lanar DE, Sattabongkot J, Hall T, Waters AP, Prasittisuk C, 1989. Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax. Science 245 :973–976.

    • Search Google Scholar
    • Export Citation
  • 6

    Qari SH, Goldman IF, Povoa MM, Oliveira S, Alpers MP, Lal AA, 1991. Wide distribution of the variant form of the human malaria parasite Plasmodium vivax. J Biol Chem 266 :16297–16300.

    • Search Google Scholar
    • Export Citation
  • 7

    Qari SH, Goldman IF, Povoa MM, di Santi S, Alpers MP, Lal AA, 1992. Polymorphism in the circumsporozoite protein of the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 55 :105–114.

    • Search Google Scholar
    • Export Citation
  • 8

    Qari SH, Collins WE, Lobel HO, Tylor F, Lal AA, 1994. A study of polymorphism in the circumsporozoite protein of the human malaria parasites. Am J Trop Med Hyg 50 :45–51.

    • Search Google Scholar
    • Export Citation
  • 9

    Wirtz RA, Rosenberg R, Sattabongkot J, Webster HK, 1990. Prevalence of antibody to heterologous circumsporozoite protein of Plasmodium vivax in Thailand. Lancet 336 :593–595.

    • Search Google Scholar
    • Export Citation
  • 10

    Del Portillo HA, Longacre S, Khouri E, David PH, 1991. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci USA 88 :4030–4034.

    • Search Google Scholar
    • Export Citation
  • 11

    Premawansa S, Snewin VA, Khouri E, Mendis KN, David PH, 1993. Plasmodium vivax: recombination between potential allelic types of the merozoite surface protein MSP1 in parasites isolated from patients. Exp Parasitol 76 :192–199.

    • Search Google Scholar
    • Export Citation
  • 12

    Cheng Q, Stowers A, Huang TY, Bustos D, Huang YM, Rzepczyk C, Saul A, 1993. Polymorphism in Plasmodium vivax MSA1 gene – the result of intragenic recombinations? Parasitology 106 :335–345.

    • Search Google Scholar
    • Export Citation
  • 13

    Mancilla LI, Levitus G, Kirchgatter K, Mertens F, Herrera S, del Portillo HA, 1994. Plasmodium vivax: dimorphic DNA sequences from the MSP-1 gene code for regions that are immunogenic in natural infections. Exp Parasitol 79 :148–158.

    • Search Google Scholar
    • Export Citation
  • 14

    Kolakovich K, Ssengoba A, Wojcik K, Tsuboi T, Al-Yaman F, Alpers M, Adams JH, 1996. Plasmodium vivax: favored gene frequencies of the merozoite surface protein-1 and the multiplicity of infection in a malaria endemic region. Exp Parasitol 83 :11–18.

    • Search Google Scholar
    • Export Citation
  • 15

    Putaporntip C, Jongwutiwes S, Tanabe K, Thaithong S, 1997. Interallelic recombination in the merozoite surface protein 1 (MSP1) gene of Plasmodium vivax from Thai isolates. Mol Biochem Parasitol 84 :49–56.

    • Search Google Scholar
    • Export Citation
  • 16

    Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day K, 1999. Polymorphism at the merozoite surface protein-3a locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 61 :518–525.

    • Search Google Scholar
    • Export Citation
  • 17

    Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day K, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 :257–272.

    • Search Google Scholar
    • Export Citation
  • 18

    Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW, 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol 101 :131–147.

    • Search Google Scholar
    • Export Citation
  • 19

    Plowe C, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52 :565–568.

    • Search Google Scholar
    • Export Citation
  • 20

    Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario WE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61 :315–320.

    • Search Google Scholar
    • Export Citation
  • 21

    Kain KC, Keystone J, Franke ED, Lanar DE, 1991. Global distribution of a variant of the circumsporozoite gene of Plasmodium vivax. J Infect Dis 164 :208–210.

    • Search Google Scholar
    • Export Citation
  • 22

    Sokal RR, Rohlf FJ, 1981. Biometry. Second edition. San Francisco, W.H. Freeman and Company.

  • 23

    Suwanabun N, Sattabongkot J, Wirtz RA, Rosenberg R, 1994. The epidemiology of Plasmodium vivax circumsporozoite protein polymorphs in Thailand. Am J Trop Med Hyg 50 :460–464.

    • Search Google Scholar
    • Export Citation
  • 24

    Burkot TR, Wirtz RA, Paru R, Garner P, Alpers MP, 1992. The population dynamics in mosquitoes and humans of two Plasmodium vivax polymorphs distinguished by different circumsporozoite protein repeat regions. Am J Trop Med Hyg 47 :778–786.

    • Search Google Scholar
    • Export Citation
  • 25

    Kain KC, Brown AE, Webster HK, Wirtz RA, Keystone JS, Rodriguez MH, Kinahan J, Rowland M, Lanar DE, 1992. Circumsporozoite genotyping of global isolates of Plasmodium vivax from dried blood specimens. J Clin Microbiol 30 :1863–1866.

    • Search Google Scholar
    • Export Citation
  • 26

    Gonzalez JM, Hurtado S, Arevalo-Herrera M, Herrera S, 2001. Variants of the Plasmodium vivax circumsporozoite protein (VK210 and VK247) in Colombian isolates. Mem Inst Oswaldo Cruz 96 :709–712.

    • Search Google Scholar
    • Export Citation
  • 27

    Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE, 1999. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun 67 :410–412.

    • Search Google Scholar
    • Export Citation
  • 28

    Rodriguez MH, Gonzalez-Ceron L, Hernandez JE, Nettel JA, Villarreal C, Kain KC, Wirtz RA, 2000. Different prevalence of Plasmodium vivax phenotypes CK210 and VK247 associated with the distribution of Anopheles albimanus and Anopheles pseudopunctipennis in Mexico. Am J Trop Med Hyg 62 :122–127.

    • Search Google Scholar
    • Export Citation
  • 29

    Babiker HA, Lines J, Hill WG, Walliker D, 1997. Population structure of Plasmodium falciparum in villages with different malaria endemicity in east Africa. Am J Trop Med Hyg 56 :141–147.

    • Search Google Scholar
    • Export Citation
  • 30

    Anderson TJC, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bocharie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day K, 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 :1467–1482.

    • Search Google Scholar
    • Export Citation
  • 31

    Paul REL, Hackford I, Brockman A, Muller-Graf C, Price R, Luxemburger C, White NJ, Nosten F, Day KP, 1998. Transmission intensity and Plasmodium falciparum diversity on the northwestern border of Thailand. Am J Trop Med Hyg 58 :195–203.

    • Search Google Scholar
    • Export Citation
  • 32

    Tanner M, Beck H-P, Felger I, Smith T, 1999. The epidemiology of multiple Plasmodium falciparum infections. 1. General introduction. Trans R Soc Trop Med Hyg 93 (Suppl):1–2.

    • Search Google Scholar
    • Export Citation
  • 33

    Joshi H, Subbarao SK, Adak T, Nanda N, Ghosh SK, Carter R, Sharma VP, 1997. Genetic structure of Plasmodium vivax isolates in India. Trans R Soc Trop Med Hyg 91 :231–235.

    • Search Google Scholar
    • Export Citation
  • 34

    Machado RLD, Povoa MM, 2000. Distribution of Plasmodium vivax variants (VK210, VK247, and P. vivax-like) in three endemic areas of the Amazon region of Brazil and their correlation with chloroquine treatment. Trans R Soc Trop Med Hyg 94 :377–381.

    • Search Google Scholar
    • Export Citation
  • 35

    Udagama PV, Gamage-Mendis AC, Havid PH, Peiris JSM, Perera KLRL, Mendis KN, Carter R, 1990. Genetic complexity of Plasmodium vivax parasites in individual human infections analyzed with monoclonal antibodies against variant epitopes on a single parasite protein. Am J Trop Med Hyg 42 :104–110.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

GENETIC DIVERSITY AND MULTIPLE INFECTIONS OF PLASMODIUM VIVAX MALARIA IN WESTERN THAILAND

View More View Less
  • 1 Department of Entomology, Pennsylvania State University, University Park, Pennsylvania; Department of Entomology, Armed Forces Research Institute of Medical Science–United States Army Military Component, Bangkok, Thailand; Department of Biologic Sciences, State University of New York at Buffalo, Buffalo, New York

Using two polymorphic genetic markers, the merozoite surface protein-3α (MSP-3α) and the circumsporozoite protein (CSP), we investigated the population diversity of Plasmodium vivax in Mae Sod, Thailand from April 2000 through June 2001. Genotyping the parasites isolated from 90 malaria patients attending two local clinics for the dimorphic CSP gene revealed that the majority of the parasites (77%) were the VK210 type. Genotyping the MSP3-α gene indicated that P. vivax populations exhibited an equally high level of polymorphism as those from Papua New Guinea, a hyperendemic region. Based on the length of polymerase chain reaction products, three major types of the MSP-3α locus were distinguished, with frequencies of 74.8%, 18.7%, and 6.5%, respectively. The 13 alleles distinguished by restriction fragment length polymorphism analysis did not show a significant seasonal variation in frequency. Genotyping the MSP-3α and CSP genes showed that 19.3% and 25.6% of the patients had multiple infections, respectively, and the combined rate was 35.6%. Comparisons of MSP-3α sequences from nine clones further confirmed the high level of genetic diversity of the parasite and also suggested that geographic isolation may exist. These results strongly indicate that P. vivax populations are highly diverse and multiple clonal infections are common in this malaria-hypoendemic region of Thailand.

Author Notes

Reprint requests: Liwang Cui, Department of Entomology, Penn-sylvania State University, 501 ASI Building, University Park, PA 16802.
Save