DIHYDROFOLATE REDUCTASE AND DIHYDROPTEROATE SYNTHASE GENOTYPES ASSOCIATED WITH IN VITRO RESISTANCE OF PLASMODIUM FALCIPARUM TO PYRIMETHAMINE, TRIMETHOPRIM, SULFADOXINE, AND SULFAMETHOXAZOLE

INSAF KHALIL Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark; Department of Biochemistry, Faculty of Medicine, University of Khartoum, Sudan; Department of Clinical Pharmacology, Copenhagen University Hospital, Denmark; Department of Biochemistry, King Faisal University, Dammam, Saudi Arabia; Department of International Health, Institute of Public Health, University of Copenhagen, Denmark

Search for other papers by INSAF KHALIL in
Current site
Google Scholar
PubMed
Close
,
ANITA M. RØNN Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark; Department of Biochemistry, Faculty of Medicine, University of Khartoum, Sudan; Department of Clinical Pharmacology, Copenhagen University Hospital, Denmark; Department of Biochemistry, King Faisal University, Dammam, Saudi Arabia; Department of International Health, Institute of Public Health, University of Copenhagen, Denmark

Search for other papers by ANITA M. RØNN in
Current site
Google Scholar
PubMed
Close
,
MICHAEL ALIFRANGIS Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark; Department of Biochemistry, Faculty of Medicine, University of Khartoum, Sudan; Department of Clinical Pharmacology, Copenhagen University Hospital, Denmark; Department of Biochemistry, King Faisal University, Dammam, Saudi Arabia; Department of International Health, Institute of Public Health, University of Copenhagen, Denmark

Search for other papers by MICHAEL ALIFRANGIS in
Current site
Google Scholar
PubMed
Close
,
HAYTHAM A. GABAR Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark; Department of Biochemistry, Faculty of Medicine, University of Khartoum, Sudan; Department of Clinical Pharmacology, Copenhagen University Hospital, Denmark; Department of Biochemistry, King Faisal University, Dammam, Saudi Arabia; Department of International Health, Institute of Public Health, University of Copenhagen, Denmark

Search for other papers by HAYTHAM A. GABAR in
Current site
Google Scholar
PubMed
Close
,
GWIRIA M. H. SATTI Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark; Department of Biochemistry, Faculty of Medicine, University of Khartoum, Sudan; Department of Clinical Pharmacology, Copenhagen University Hospital, Denmark; Department of Biochemistry, King Faisal University, Dammam, Saudi Arabia; Department of International Health, Institute of Public Health, University of Copenhagen, Denmark

Search for other papers by GWIRIA M. H. SATTI in
Current site
Google Scholar
PubMed
Close
, and
IB C. BYGBJERG Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark; Department of Biochemistry, Faculty of Medicine, University of Khartoum, Sudan; Department of Clinical Pharmacology, Copenhagen University Hospital, Denmark; Department of Biochemistry, King Faisal University, Dammam, Saudi Arabia; Department of International Health, Institute of Public Health, University of Copenhagen, Denmark

Search for other papers by IB C. BYGBJERG in
Current site
Google Scholar
PubMed
Close
Restricted access

A total of 70 Plasmodium falciparum isolates were tested in vitro against pyrimethamine (PYR), tri-methoprim (TRM), sulfadoxine (SDX), and sulfamethoxazole (SMX), and their dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genotypes were determined. dhfr genotypes correlated with PYR and TRM drug responses (r = 0.93 and 0.85). Isolates with wild-type alleles showed mean half inhibitory concentrations (IC50 ± SD) of 0.10 ± 0.10 and 0.15 ± 0.06 μg/100 μl for PYR and TRM. Parasites with mutations at codons 108 and 51 alone or combined with codon 59 have IC50 of 11.46 ± 0.86 (PYR) and 2.90 ± 0.59 μg/100 μl (TRM). For both drugs, the differences in the mean IC50 between wild and mutant parasites were statistically significant (P < 0.001). Isolates with mixed wild and mutant alleles showed an intermediate level of susceptibility. Our data show partial cross-resistance between PYR/TRM and SDX/SMX (r = 0.85 and 0.65). Correlation was not observed between different dhps genotypes and the in vitro outcome to SDX and SMX (r = 0.30 and 0.34). The lack of correlation could be due to folates and para-aminobenzoic acid in the RPMI medium and the serum used to supplement the cultures.

Author Notes

Reprint requests: Insaf Khalil, Center for Medical Parasitology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Panum Institute, Building 24,2, Blegdamsvej 3, 2200, Copenhagen N, Denmark, Telephone: + 45 35 32 76 80, Fax: + 45 35 32 78 51, E-mail: InsafK@hotmail.com
  • 1

    Plowe C, Cortese J, Djimde A, Nwanyanwu O, Watkins W, Winstanley P, Estrada-Franco J, Mollinedo R, Avila J, Cespedes J, Carter D, Doumbo O, 1997. Mutations in P. falciparum dihydrofolate reductase and dihydropteroate synthase genes and epidemiologic patterns of pyrimethamine/sulfadoxine use and resistance. J Infect Dis 176 :1590–1596.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    WHO, 1992. The overlap in the clinical presentation and treatment of malaria and pneumonia in children. Report No. 12, Geneva: World Health Organization.

    • PubMed
    • Export Citation
  • 3

    Lyer JK, Milhous WK, Cortese JF, Kublin JG, Plowe CV, 2001. P. falciparum cross-resistance between trimethoprim and pyrimethamine. Lancet 358 :1–4.

  • 4

    Peterson D, Walliker D, Wellems T, 1988. Evidence that a point mutation in dihydrofolate reductase thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci U S A 85 :9114–9118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Zolg J, Plitt J, Chen G, Palmer S, 1989. Point mutations in the dihydrofolate reductase thymidylate synthase as molecular basis for pyrimethamine resistance in P. falciparum. Mol Biochem Parasitol 36 :253–262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Brooks D, Wang P, Read M, Watkins W, Sims P, Hyde J, 1994. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: DHPS gene in line of human malaria parasite P. falciparum with differing resistance to sulfadoxine. Eur J Biochem 224 :397–405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Wang P, Read M, Sims P, Hyde J, 1997. Sulfadoxine resistance in human malaria parasite P. falciparum is determined by mutations in the dihydropteroate synthase gene and an additional factor associated with folate utilisation. Mol Microbiol 23 :979–986.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Foote S, Galatis D, Cowman A, 1990. Amino acids in the dihydrofolate reductase thymidylate synthase gene of P. falciparum involved in pyrimethamine resistance. Proc Natl Acad Sci U S A 87 :3014–3017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Peterson D, Milhous W, Wellems T, 1990. Molecular basis of differential resistance to cycloguanil and pyrimethamine in P. falciparum malaria. Proc Natl Acad Sci U S A 87 :3018–3022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Martin P, Arnold J, 1986. Treatment of acute falciparum malaria with sulfalene and trimethoprim. JAMA 203 :134–138.

  • 11

    Schapira A, Bygbjerg IC, Jepsen S, Flachs H, Bentzon A, 1986. The susceptibility of P. falciparum to sulfadoxine and pyrimethamine: correlation of in vivo and in vitro studies. Am J Trop Med Hyg 35 :239–245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Petersen E, 1987. In vitro susceptibility of P. falciparum to pyrimethamine, sulfadoxine, trimethoprim and sulfamethoxazole singly and in combination. Trans R Soc Trop Med Hyg 81 :238–241.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Jensen JB, Trager W, 1977. Plasmodium falciparum in culture: use of outdated erythrocytes and description of the candle jar method. J Parasitol 63 :883–886.

  • 14

    Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith, J, Struhl K, 1997. Short protocols in molecular biology. 3rd ed. New York: Welly & Sons.

    • PubMed
    • Export Citation
  • 15

    Taylor A, 1997. Titration of heparinase for the removal of the PCR inhibitory effect of heparin in DNA samples. Mol Ecol 6 :383–385.

  • 16

    Jelinek T, Kilian A, Curtis J, Duraisingh M, Kabagambe G, Warhurst D, 1999. P. falciparum: selection of serine 108 of dhfr during treatment uncomplicated malaria with cotrimoxazole in Ugandan children. Am J Trop Med Hyg 61 :125–130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Peterson D, Santi M, Povoa V, Scalvosa V, Rosario D, Wellems T, 1991. Prevalence of dihydrofolate reductase Asp-108 mutation as basis for pyrimethamine resistant falciparum malaria in the Brazilian Amazon. Am J Trop Med Hyg 45 :492–497.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Basco L, Eldin P, Wilson CJ, Le Brase J, Mazabrand A, 1995. Point mutations in the dihydrofolate reductasethymidylate synthase gene and pyrimethamine and cycloguanil resistance in P. falciparum. Mol Biochem Parasitol 69 :135–138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Nzila-Mounda A, Mberu E, Sibley C, Plowe C, Winstanley P, Watkins W, 1998. Kenyan P. falciparum isolates: correlation between pyrimethamine and cycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrob Agent Chemother 44 :164–169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Khalil IF, 2000. Cotrimoxazole and Fansidar in the treatment of acute uncomplicated falciparum malaria: efficacy, safety and molecular characterization of resistance. PhD thesis. Faculty of Health Sciences, University of Copenhagen, Denmark.

    • PubMed
    • Export Citation
  • 21

    Magesa SM, Mdira KY, Farnert A, Simonsen PE, Bygbjerg IC, Jakobsen PH, 2001. Distinguishing P. falciparum treatment failures from re-infections by using polymerase chain reaction genotyping in a holoendemic area in Northeastern Tanzania. Am J Trop Med Hyg 65 :477–483.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Milhous W, Weatherly N, Bowdre J, Desjardins R, 1985. In vitro activities and mechanisms of resistance to antifolate drugs. Antimicrob Agents Chemother 27 :525–530.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Chulay JD, Watkins WM, Sixsmith DG, 1984. Synergistic antimalarial activity of pyrimethamine and sulfadoxine against P. falciparum in vitro. Am J Trop Med Hyg 33 :325–330.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Watkins W, Sixsmith D, Chulay J, Spencer H, 1985. Antagonism of sulfadoxine and pyrimethamine antimalarial activity in vitro by para-aminobenzoic acid, para-aminobenzoylglutamic acid and folic acid. Mol Biochem Parasitol 14 :55–61.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Wang P, Sims P, Hyde J, 1997. Modified in vitro susceptibility assay for P. falciparum suitable for investigating sulfadoxine resistance. Parasitology 115 :223–230.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Ndounga M, Basco LK, Ringwald P, 2001. Evaluation of a new SDX sensitivity assay in vitro for field isolates of P. falciparum. Trans R Soc Trop Med Hyg 95 :55–57.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 585 515 26
Full Text Views 521 9 0
PDF Downloads 148 9 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save