INCREASED APOPTOSIS AND EXPRESSION OF TUMOR NECROSIS FACTOR-α CAUSED BY INFECTION OF CULTURED HUMAN MONOCYTES WITH DENGUE VIRUS

LUZ M. ESPINA Sección de Virología y Sección de Inmunología y Biología Celular, Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela

Search for other papers by LUZ M. ESPINA in
Current site
Google Scholar
PubMed
Close
,
NEREIDA J. VALERO Sección de Virología y Sección de Inmunología y Biología Celular, Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela

Search for other papers by NEREIDA J. VALERO in
Current site
Google Scholar
PubMed
Close
,
JANETH M. HERNÁNDEZ Sección de Virología y Sección de Inmunología y Biología Celular, Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela

Search for other papers by JANETH M. HERNÁNDEZ in
Current site
Google Scholar
PubMed
Close
, and
JESÚS A. MOSQUERA Sección de Virología y Sección de Inmunología y Biología Celular, Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela

Search for other papers by JESÚS A. MOSQUERA in
Current site
Google Scholar
PubMed
Close
Restricted access

Dengue (DEN) virus is responsible for one of the most significant viral diseases in tropical countries. Monocytes/macrophages (Mo/Mϕ) are the major target cells for DEN virus. To determine the effects of the interaction between DEN virus and Mo/Mϕ, human monocyte cultures were infected with DEN virus type 2. Apoptosis and production of tumor necrosis factor-α (TNF-α) and nitric oxide were measured in control and infected cultures. Virus was taken up by phagocytosis, but no membrane-coated pits at the virus attachment sites were observed. Increased number of apoptotic cells and increased production of TNF-α were observed in infected monocyte cultures. No increase in production of nitric oxide was observed. These results may be related to early primary viral infection, in which virus could induce apoptosis in monocytes, but monocytes may contribute to host defense mechanisms against virus by viral phagocytosis, phagocytosis of infected apoptotic cells, and the release of proinflammatory cytokines.

Author Notes

Reprint requests: Jesus A. Mosquera, Apartado Postal 1151, Maracaibo 4001-A, Zulia, Venezuela, Telephone/Fax: 58-61-597-247, E-mail: mosquera99@hotmail.com
  • 1

    Gubler DJ, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11 :480–496.

  • 2

    Halstead SB, O’Rourke EJ, Allinson AC, 1977. Dengue virus and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J Exp Med 146 :218–229.

    • Search Google Scholar
    • Export Citation
  • 3

    Halstead SB, 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239 :476–481.

  • 4

    Anderson R, Wang S, Osiowy C, Issekutz AC, 1997. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71 :4226–4232.

    • Search Google Scholar
    • Export Citation
  • 5

    Chang DM, Shaio MF, 1994. Production of interleukin-1 (IL-1) and IL-1 inhibitor by human monocyte exposed to dengue virus. J Infect Dis 170 :811–817.

    • Search Google Scholar
    • Export Citation
  • 6

    Shaio MF, Cheng SN, Yuh YS, Yang KD, 1995. Cytotoxic factor released by dengue virus-infected human monocytes. J Med Virol 46 :216–223.

    • Search Google Scholar
    • Export Citation
  • 7

    Vaux D, Gordon S, 1985. Intracellular events during phagocytosis. Dean RT, Jessup W, eds. Mononuclear Phagocytes: Physiology and Pathology. New York: Elsevier, 5-25.

  • 8

    Marianneau P, Steffan AM, Royer C, Drouet MT, Jaeck D, Kirn A, Deubel V, 1999. Infection of primary cultures of human Kupffer cells by dengue virus: No viral progeny synthesis, but cytokine production is evident. J Virol 73 :5201–5206.

    • Search Google Scholar
    • Export Citation
  • 9

    Avirutnan P, Malasit P, Selinger B, Bhakdi S, Husmann M, 1998. Dengue virus infection of human endothelial cells leads to chemokine production, complement activation and apoptosis. J Immunol 161 :6338–6346.

    • Search Google Scholar
    • Export Citation
  • 10

    Gavrieli Y, Sherman Y, Ben-Sasson SA, 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119 :493–501.

    • Search Google Scholar
    • Export Citation
  • 11

    Stuehr DJ, Gross SS, Sakuma I, Levi R, Nathan C, 1989. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of the endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med 169 :1011–1023.

    • Search Google Scholar
    • Export Citation
  • 12

    Kittigul L, Meethien N, Sujirarat D, Kittigul C, Vasanavat S, 1997. Comparison of dengue virus antigens in the serum and peripheral blood mononuclear cells from dengue infected patients. Asian Pac J Allergy Immunol 15 :187–191.

    • Search Google Scholar
    • Export Citation
  • 13

    Pauza CD, Price TM, 1988. Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis. J Cell Biol 107 :959–968.

    • Search Google Scholar
    • Export Citation
  • 14

    Hotta H, Wiharta AS, Hotta S, Homma M, 1984. Dengue type 2 virus infection in human peripheral blood monocyte cultures. Microbiol Immunol 28 :1099–1109.

    • Search Google Scholar
    • Export Citation
  • 15

    Brideau AD, Enquist LW, Tirabassi RS, 2000. The role of viron membrane protein endocytosis in the herpesvirus life cycle. J Clin Virol 17 :69–82.

    • Search Google Scholar
    • Export Citation
  • 16

    Se-Thoe SY, Ling AE, Ng NM, 2000. Alteration of virus entry: a neutralisation mechanism for dengue-2 virus. J Med Virol 62 :364–376.

  • 17

    O’Sullivan MA, Killen HM, 1994. The differentiation state of monocytic cells affects their susceptibility to infection and the effects of infection by dengue virus. J Gen Virol 75 :2387–2392.

    • Search Google Scholar
    • Export Citation
  • 18

    Després P, Flamand M, Ceccaldi PE, Deubel V, 1996. Human isolates of dengue type 1 virus induce apoptosis in mouse neuroblastoma cells. J Virol 70 :4090–4096.

    • Search Google Scholar
    • Export Citation
  • 19

    Marianneau P, Cardona A, Edelman L, Deubel V, Després V, 1997. Dengue virus replication in human hepatoma cells activates NF-kB which in turn induces apoptotic cell death. J Virol 71 :3244–3249.

    • Search Google Scholar
    • Export Citation
  • 20

    Koyama AH, Fukumori T, Fujita M, Irie H, Adachi A, 2000. Physiological significance of apoptosis in animal virus infection. Microbes Infect 2 :1111–1117.

    • Search Google Scholar
    • Export Citation
  • 21

    Falasca L, Bergamini A, Serafino A, Balabaud C, Dini L, 1996. Human Kuffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes. Exp Cell Res 224 :152–162.

    • Search Google Scholar
    • Export Citation
  • 22

    Persidsky Y, Steffan AM, Gendrault JL, Hurtrel B, Berger S, Roger C, Stutte HJ, Muchmore G, Aubertin AM, Kirn A, 1995. Permissiveness of Kupffer cell for simian immunodeficiency virus (SIV) and morphologic changes in the liver of rhesus monkeys at different periods of SIV infection. Hepatology 21 :1215–1225.

    • Search Google Scholar
    • Export Citation
  • 23

    Decker K, 1990. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192 :245–261.

  • 24

    Chaturvedi UC, Elbishbishi EA, Agarwal R, Raghupathy R, Nagar R, Tandon R, Pacsa AS, Younis OI, Azizieh F, 1999. Sequential production of cytokines by dengue virus-infected human peripheral blood leukocyte cultures. J Med Virol 59 :335–340.

    • Search Google Scholar
    • Export Citation
  • 25

    Khare M, Chaturvedi UC, 1997. Role of nitric oxide in transmission of dengue virus specific suppressor signal. Indian J Exp Biol 35 :855–860.

    • Search Google Scholar
    • Export Citation
  • 26

    Kurane I, Ennis FA, 1994. Cytokines in dengue virus infection: role of cytokines in the pathogenesis of dengue hemorrhagic fever. Semin Virol 5 :443–448.

    • Search Google Scholar
    • Export Citation
  • 27

    Niwa M, Hara A, Kanamori Y, Hatakeyama D, Saito M, Takami T, Matsuno H, Kozawa O, Uematsu T, 2000. Nuclear Factor-kappa B activates dual inhibition sites in the regulation of tumor necrosis factor-alpha-induced neutrophil apoptosis. Eur J Pharmacol 407 :211–219.

    • Search Google Scholar
    • Export Citation
  • 28

    Jaeschke H, Farhood A, Cai SX, Tseng BY, Bajt AL, 2000. Protection against TNF-induced liver parenchymal cell apoptosis during endotoxemia by a novel caspase inhibitor in mice. Toxicol Appl Pharmacol 169 :77–83.

    • Search Google Scholar
    • Export Citation
  • 29

    van Strijp JA, van der Tol ME, Miltenburg LA, van Kessel KP, Verhoef J, 1991. Tumor necrosis factor triggers granulocytes to internalize complement-coated virus particles. Immunology 73 :77–82.

    • Search Google Scholar
    • Export Citation
  • 30

    Kittigul L, Temprom W, Sujirarat D, Kittigul C, 2000. Determination of tumor necrosis factor-alpha levels in dengue virus infected patients by a sensitive biotin-streptavidin enzyme-linked immunosorbent assay. J Virol Methods 90 :51–57.

    • Search Google Scholar
    • Export Citation
  • 31

    Hober D, Nguyen TL, Shen L, Ha DQ, Huong VT, Benyoucef S, Nguyen TH, Bui TM, Loan HK, Le BL, Bouzidi A, De Groote D, Drouet MT, Deubel V, Wattre P, 1998. Tumor necrosis factor alpha levels in plasma and whole blood culture in dengue-infected patients: relationship between virus detection and pre-existing specific antibodies. J Med Virol 54 :210–218.

    • Search Google Scholar
    • Export Citation
  • 32

    Lee DH, Tam SS, Benyoucef S, de Groote D, Deubel V, Wattre P, 1996. Enhanced TNF alpha production by monocytic-like cells exposed to dengue virus antigen. Immunol Lett 53 :115–120.

    • Search Google Scholar
    • Export Citation
  • 33

    Bhakdi S, Kazatchkine MD, 1990. Pathogenesis of dengue: an alternative hypothesis. Southeast Asian J Trop Med Public Health 21 :652–657.

    • Search Google Scholar
    • Export Citation
  • 34

    Daughaday CC, Brandt WE, McCown JM, Russel PK, 1981. Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors. Infect Immun 32 :469–473.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 14 14 4
Full Text Views 283 123 2
PDF Downloads 54 18 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save