Kassebaum NJ et al., 2014. A systematic analysis of global anemia burden from 1990 to 2010. Blood J 123: 615–624.
Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L, 2016. Iron deficiency anaemia. Lancet 387: 907–916.
World Health Organization, 2015. The Global Prevalence of Anaemia in 2011. Geneva, Switzerland: WHO.
Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG, 2001. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107: 1381–1386.
Lozoff B, Clark KM, Jing Y, Armony-Sivan R, Angelilli ML, Jacobson SW, 2008. Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr 152: 696.
Choudhury V, Amin SB, Agarwal A, Srivastava L, Soni A, Saluja S, 2015. Latent iron deficiency at birth influences auditory neural maturation in late preterm and term infants. Am J Clin Nutr 102: 1030–1034.
Lozoff B, Wolf AW, Jimenez E, 1996. Iron-deficiency anemia and infant development: Effects of extended oral iron therapy. J Pediatr 129: 382–389.
Walter T, De Andraca I, Chadud P, Perales CG, 1989. Iron deficiency anemia: Adverse effects on infant psychomotor development. Pediatrics 84: 7–17.
World Health Organization, 2001. Iron Deficiency Anaemia: Assessment, Prevention, and Control. Geneva, Switzerland: WHO.
Whitehead RD, Mei Z, Mapango C, Jefferds MED, 2019. Methods and analyzers for hemoglobin measurement in clinical laboratories and field settings. Ann NY Acad Sci 1450: 147–171.
Centers for Disease Control and Prevention, World Health Organization, Nutrition International, UNICEF, 2020. Micronutrient Survey Manual. Geneva, Switzerland: WHO.
Sanchis-Gomar F, Cortell-Ballester J, Pareja-Galeano H, Banfi G, Lippi G, 2013. Hemoglobin point-of-care testing: The HemoCue system. J Lab Autom 18: 198–205.
World Health Organization, 2011. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Geneva, Switzerland: WHO.
Hinnouho GM, Barffour MA, Wessells KR, Brown KH, Kounnavong S, Chanhthavong B, Ratsavong K, Kewcharoenwong C, Hess SY, 2018. Comparison of haemoglobin assessments by HemoCue and two automated haematology analysers in young Laotian children. J Clin Pathol 71: 532–538.
Young MF, Raines K, Jameel F, Sidi M, Oliveira-Streiff S, Nwajei P, McGlamry K, Ou J, Oladele A, Suchdev PS, 2021. Non-invasive hemoglobin measurement devices require refinement to match diagnostic performance with their high level of usability and acceptability. PLoS One 16: e0254629.
Da Silva Pereira A, De Castro IRR, Bezerra FF, Neto JFN, Da Silva ACF, 2020. Reproducibility and validity of portable haemoglobinometer for the diagnosis of anaemia in children under the age of 5 years. J Nutr Sci 9: e3.
Instituto Nacional de Estadistica e Informatica, 2020. Indicadores de Resultados de Los Programas Presupuestales, Primer Semestre 2020. Lima, Peru: Instituto Nacional de Estadistica e Informatica.
Alcázar L; The Group for Analysis of Development, 2013. The Economic Impact of Anaemia in Peru. Lima, Peru: The Group for Analysis of Development.
Instituto Nacional de Estadística e Informática, 2018. Metodología de la medición de la anemia Encuesta Demográfica y de Salud Familiar. Lima, Peru: The Group for Analysis of Development.
Program for Appropriate Technology in Health, USAID, 1997. Anemia Detection Methods in Low-Resource Settings. Washington, DC: USAID.
Anderson CC, Kapoor S, Mark TE, 2023. The Harriet Lane Handbook, 23rd ed. Philadelphia, PA: Elsevier.
Nkrumah B, Nguah SB, Sarpong N, Dekker D, Idriss A, May J, Adu-Sarkodie Y, 2011. Hemoglobin estimation by the HemoCue portable hemoglobin photometer in a resource poor setting. BMC Clin Pathol 11: 5.
Sawant RB, Bharucha ZS, Rajadhyaksha SB, 2007. Evaluation of hemoglobin of blood donors deferred by the copper sulphate method for hemoglobin estimation. Transfus Apher Sci 36: 143–148.
Gwetu TP, Chhagan MK, 2015. Evaluation of the diagnostic accuracy of the HemoCue device for detecting anaemia in healthy school-aged children in KwaZulu-natal, South Africa. S Afr Med J 105: 596–599.
Tagny CT, Kouam L, Mbanya D, 2008. The new HemoCue system Hb 301 for the haemoglobin measurement in pregnant women. Ann Biol Clin (Paris) 66: 90–94.
Baart AM, de Kort WLAM, van den Hurk K, Pasker-de Jong PCM, 2016. Hemoglobin assessment: Precision and practicability evaluated in the Netherlands—The HAPPEN study. Transfusion 56: 1984–1993.
Rappaport AI, Karakochuk CD, Whitfield KC, Kheang KM, Green TJ, 2017. A method comparison study between two hemoglobinometer models (Hemocue Hb 301 and Hb 201+) to measure hemoglobin concentrations and estimate anemia prevalence among women in Preah Vihear, Cambodia. Int J Lab Hematol 39: 95–100.
Whitehead RD, Zhang M, Sternberg MR, Schleicher RL, Drammeh B, Mapango C, Pfeiffer CM, 2017. Effects of preanalytical factors on hemoglobin measurement: A comparison of two HemoCue® point-of-care analyzers. Clin Biochem 50: 513–520.
Jain A, Chowdhury N, Jain S, 2018. Intra- and inter-model reliability of Hemocue Hb 201+ and HemoCue Hb 301 devices. Asian J Transfus Sci 12: 123–126.
Yadav K, Kant S, Ramaswamy G, Ahamed F, Jacob OM, Vyas H, Kaur R, Malhotra S, Haldar P, 2020. Validation of point of care hemoglobin estimation among pregnant women using digital hemoglobinometers (HemoCue 301 and HemoCue 201+) as compared with auto-analyzer. Indian J Hematol Blood Transfus 36: 342–348.
Rappaport AI et al., 2021. Variability in haemoglobin concentration by measurement tool and blood source: An analysis from seven countries. J Clin Pathol 74: 657–663.
de Salud M, 2017. Norma Técnica—Manejó Terapéutico y Preventivo de la Anemia en Niños, Adolescentes, Mujeres Gestantes, y Puérperas. Lima, Peru: Ministerio de Salud del Perú.
Peru Ministerio de Economía y Finanzas, 2018. Proyecto de Ley de Presupuesto del Sector Público Para el Año Fiscal 2018. Lima, Peru: Peru Ministerio de Economía y Finanzas.
Gutierrez-Aguado A, De La Cruz Vargas J, Espinoza-Rojas R, 2020. Impact of the anemia: Socio-economic inequities analyzing the demography and family health survey in Peru. Value Heal 23: S119.
Janus J, Moerschel SK, 2010. Evaluation of anemia in children. Am Fam Physician 81: 1462–1471.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 879 | 879 | 333 |
Full Text Views | 13 | 13 | 7 |
PDF Downloads | 14 | 14 | 7 |
As many as one in three people worldwide have anemia, with young children at increased risk of both disease and complications. In settings without clinical laboratories, portable hemoglobinometers serve important roles in diagnosing anemia and estimating prevalence. Here, we assess the validity of two such point-of-care devices—the HemoCue Hb201 and the HemoCue Hb301—relative to the international reference standard, the cyanmethemoglobin method. In total, 428 children ages 6–60 months were recruited at health posts in Lima, Peru, and venous and capillary blood samples were collected from each participant. Venous blood was assessed with the cyanmethemoglobin method, whereas capillary blood was assessed using the Hb201 and the Hb301; 16.1% of participants were found to have anemia using the cyanmethemoglobin method. Both the Hb201 (43.7%) and the Hb301 (20.6%) overestimated this prevalence, with the former reaching statistical significance (P <0.0001 and P = 0.11, respectively). Both devices also tended to underestimate hemoglobin concentration, with the Hb201 (mean difference = −0.99 g/dL; percentage error = −8.1%) being appreciably less accurate than the Hb301 (mean difference = −0.35 g/dL; percentage error = −2.7%). Areas under the curve for the Hb201 (0.92) and the Hb301 (0.93) were statistically similar (P = 0.28); however, the Hb201 incorrectly classified 29.4% of participants compared with 11.0% for the Hb301. Both devices had more false positives than false negatives. In conclusion, the Hb301 was found to be significantly more accurate than the Hb201 at measuring hemoglobin, diagnosing anemia, and estimating anemia prevalence.
Financial support: This study was funded by a grant from the
Current contact information: Zach Silverstein, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, E-mail: zsilverstein91@gmail.com. Alicia Alva Mantari, Monica J. Pajuelo, Gladys Valdiviezo, Sandra Cruz, Pamela Castañeda, Lucia Huaman-Fernandez, Mario Salguedo, Franklin Barrientos, Bryan Saldivar-Espinoza, Patricia Sheen, and Mirko Zimic, Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru, E-mails: aalva@uch.edu.pe, monica.pajuelo.t@upch.pe, gladys.valdiviezo.v@upch.pe, sandra_cruz102@gmail.com, pamela.castaneda.d@upch.pe, lucia.huaman.f@upch.pe, mario.salguedo.b@uni.pe, franklin.barrientos.p@upch.pe, bryan.saldivar.e@upch.pe, patricia.sheen@upch.pe, and mirko.zimic@upch.pe. Kimberly Breglio, Department of Dermatology, Duke University Hospital, Durham, NC, E-mail: kimberly.breglio@duke.edu. Jessica D. Rothstein, Division of Community Health Sciences, University of Illinois at Chicago School of Public Health, Chicago, IL, E-mail: jrothst@uic.edu. Lilia Cabrera, Asociación Benéfica PRISMA, Lima, Peru, E-mail: lzcabrera28@gmail.com. Dennis Núñez-Fernández, Department of Digital Sciences, Université Paris Cité, Paris, France, E-mail: dennishnf@gmail.com. Robert H. Gilman and Sassan Noazin, Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, E-mails: rgilman1@jhu.edu and snoazin1@jhu.edu. Avid Roman-Gonzalez, Image Processing Research Laboratory, Universidad de Ciencias y Humanidades, Lima, Peru, E-mail: avid.roman-gonzalez@ieee.org.
Kassebaum NJ et al., 2014. A systematic analysis of global anemia burden from 1990 to 2010. Blood J 123: 615–624.
Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L, 2016. Iron deficiency anaemia. Lancet 387: 907–916.
World Health Organization, 2015. The Global Prevalence of Anaemia in 2011. Geneva, Switzerland: WHO.
Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG, 2001. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107: 1381–1386.
Lozoff B, Clark KM, Jing Y, Armony-Sivan R, Angelilli ML, Jacobson SW, 2008. Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr 152: 696.
Choudhury V, Amin SB, Agarwal A, Srivastava L, Soni A, Saluja S, 2015. Latent iron deficiency at birth influences auditory neural maturation in late preterm and term infants. Am J Clin Nutr 102: 1030–1034.
Lozoff B, Wolf AW, Jimenez E, 1996. Iron-deficiency anemia and infant development: Effects of extended oral iron therapy. J Pediatr 129: 382–389.
Walter T, De Andraca I, Chadud P, Perales CG, 1989. Iron deficiency anemia: Adverse effects on infant psychomotor development. Pediatrics 84: 7–17.
World Health Organization, 2001. Iron Deficiency Anaemia: Assessment, Prevention, and Control. Geneva, Switzerland: WHO.
Whitehead RD, Mei Z, Mapango C, Jefferds MED, 2019. Methods and analyzers for hemoglobin measurement in clinical laboratories and field settings. Ann NY Acad Sci 1450: 147–171.
Centers for Disease Control and Prevention, World Health Organization, Nutrition International, UNICEF, 2020. Micronutrient Survey Manual. Geneva, Switzerland: WHO.
Sanchis-Gomar F, Cortell-Ballester J, Pareja-Galeano H, Banfi G, Lippi G, 2013. Hemoglobin point-of-care testing: The HemoCue system. J Lab Autom 18: 198–205.
World Health Organization, 2011. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Geneva, Switzerland: WHO.
Hinnouho GM, Barffour MA, Wessells KR, Brown KH, Kounnavong S, Chanhthavong B, Ratsavong K, Kewcharoenwong C, Hess SY, 2018. Comparison of haemoglobin assessments by HemoCue and two automated haematology analysers in young Laotian children. J Clin Pathol 71: 532–538.
Young MF, Raines K, Jameel F, Sidi M, Oliveira-Streiff S, Nwajei P, McGlamry K, Ou J, Oladele A, Suchdev PS, 2021. Non-invasive hemoglobin measurement devices require refinement to match diagnostic performance with their high level of usability and acceptability. PLoS One 16: e0254629.
Da Silva Pereira A, De Castro IRR, Bezerra FF, Neto JFN, Da Silva ACF, 2020. Reproducibility and validity of portable haemoglobinometer for the diagnosis of anaemia in children under the age of 5 years. J Nutr Sci 9: e3.
Instituto Nacional de Estadistica e Informatica, 2020. Indicadores de Resultados de Los Programas Presupuestales, Primer Semestre 2020. Lima, Peru: Instituto Nacional de Estadistica e Informatica.
Alcázar L; The Group for Analysis of Development, 2013. The Economic Impact of Anaemia in Peru. Lima, Peru: The Group for Analysis of Development.
Instituto Nacional de Estadística e Informática, 2018. Metodología de la medición de la anemia Encuesta Demográfica y de Salud Familiar. Lima, Peru: The Group for Analysis of Development.
Program for Appropriate Technology in Health, USAID, 1997. Anemia Detection Methods in Low-Resource Settings. Washington, DC: USAID.
Anderson CC, Kapoor S, Mark TE, 2023. The Harriet Lane Handbook, 23rd ed. Philadelphia, PA: Elsevier.
Nkrumah B, Nguah SB, Sarpong N, Dekker D, Idriss A, May J, Adu-Sarkodie Y, 2011. Hemoglobin estimation by the HemoCue portable hemoglobin photometer in a resource poor setting. BMC Clin Pathol 11: 5.
Sawant RB, Bharucha ZS, Rajadhyaksha SB, 2007. Evaluation of hemoglobin of blood donors deferred by the copper sulphate method for hemoglobin estimation. Transfus Apher Sci 36: 143–148.
Gwetu TP, Chhagan MK, 2015. Evaluation of the diagnostic accuracy of the HemoCue device for detecting anaemia in healthy school-aged children in KwaZulu-natal, South Africa. S Afr Med J 105: 596–599.
Tagny CT, Kouam L, Mbanya D, 2008. The new HemoCue system Hb 301 for the haemoglobin measurement in pregnant women. Ann Biol Clin (Paris) 66: 90–94.
Baart AM, de Kort WLAM, van den Hurk K, Pasker-de Jong PCM, 2016. Hemoglobin assessment: Precision and practicability evaluated in the Netherlands—The HAPPEN study. Transfusion 56: 1984–1993.
Rappaport AI, Karakochuk CD, Whitfield KC, Kheang KM, Green TJ, 2017. A method comparison study between two hemoglobinometer models (Hemocue Hb 301 and Hb 201+) to measure hemoglobin concentrations and estimate anemia prevalence among women in Preah Vihear, Cambodia. Int J Lab Hematol 39: 95–100.
Whitehead RD, Zhang M, Sternberg MR, Schleicher RL, Drammeh B, Mapango C, Pfeiffer CM, 2017. Effects of preanalytical factors on hemoglobin measurement: A comparison of two HemoCue® point-of-care analyzers. Clin Biochem 50: 513–520.
Jain A, Chowdhury N, Jain S, 2018. Intra- and inter-model reliability of Hemocue Hb 201+ and HemoCue Hb 301 devices. Asian J Transfus Sci 12: 123–126.
Yadav K, Kant S, Ramaswamy G, Ahamed F, Jacob OM, Vyas H, Kaur R, Malhotra S, Haldar P, 2020. Validation of point of care hemoglobin estimation among pregnant women using digital hemoglobinometers (HemoCue 301 and HemoCue 201+) as compared with auto-analyzer. Indian J Hematol Blood Transfus 36: 342–348.
Rappaport AI et al., 2021. Variability in haemoglobin concentration by measurement tool and blood source: An analysis from seven countries. J Clin Pathol 74: 657–663.
de Salud M, 2017. Norma Técnica—Manejó Terapéutico y Preventivo de la Anemia en Niños, Adolescentes, Mujeres Gestantes, y Puérperas. Lima, Peru: Ministerio de Salud del Perú.
Peru Ministerio de Economía y Finanzas, 2018. Proyecto de Ley de Presupuesto del Sector Público Para el Año Fiscal 2018. Lima, Peru: Peru Ministerio de Economía y Finanzas.
Gutierrez-Aguado A, De La Cruz Vargas J, Espinoza-Rojas R, 2020. Impact of the anemia: Socio-economic inequities analyzing the demography and family health survey in Peru. Value Heal 23: S119.
Janus J, Moerschel SK, 2010. Evaluation of anemia in children. Am Fam Physician 81: 1462–1471.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 879 | 879 | 333 |
Full Text Views | 13 | 13 | 7 |
PDF Downloads | 14 | 14 | 7 |