Insecticide Resistance of Xenopsylla cheopis in Madagascar: Revision of Diagnostic Doses for Bioassay and Exploration of Biochemical Mechanisms

Annick O. Raveloson Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;
Ecole Doctorale Sciences de la Vie et de l’Environnement, Université d’Antananarivo, Antananarivo, Madagascar

Search for other papers by Annick O. Raveloson in
Current site
Google Scholar
PubMed
Close
,
Thiery Nepomichene Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;

Search for other papers by Thiery Nepomichene in
Current site
Google Scholar
PubMed
Close
,
Tojo R. Ramihangihajason Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;

Search for other papers by Tojo R. Ramihangihajason in
Current site
Google Scholar
PubMed
Close
,
Mandimby Rajaonarimanana Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;

Search for other papers by Mandimby Rajaonarimanana in
Current site
Google Scholar
PubMed
Close
,
Fara N. Raharimalala Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;

Search for other papers by Fara N. Raharimalala in
Current site
Google Scholar
PubMed
Close
,
Mireille Harimalala Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;
Ecole Doctorale Sciences de la Vie et de l’Environnement, Université d’Antananarivo, Antananarivo, Madagascar

Search for other papers by Mireille Harimalala in
Current site
Google Scholar
PubMed
Close
, and
Romain Girod Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar;

Search for other papers by Romain Girod in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

The Oriental rat flea, Xenopsylla cheopis, is known worldwide as an efficient plague vector, including in Madagascar, where the disease remains a public health concern. Chemical control is the primary response method against X. cheopis in Madagascar. Previous bioassays focusing on different flea populations from Madagascar showed phenotypic resistance to various insecticides, including deltamethrin and fenitrothion, which, respectively, represent the previous and current chemicals for flea vector control. Despite apparent insecticide resistance, the associated mechanisms of this resistance remain poorly known. The aims of this study were to adjust diagnostic doses of deltamethrin and fenitrothion and to investigate the metabolism-based insecticide resistance of X. cheopis in Madagascar. Five available laboratory-reared flea strains of X. cheopis were selected, and their susceptibility statuses to deltamethrin and fenitrothion were determined using the WHO standard bioassay. Diagnostic doses of each insecticide were determined by the probit method, in accordance with concentration gradients. Biochemical microplate-based assays were performed to detect overproduction of cytochrome P450, alpha-/beta-esterases, and glutathione S-transferase (GST), which are signatures of metabolic resistance. The five tested strains showed different susceptibility statuses against deltamethrin and fenitrothion. The diagnostic doses were estimated to be 0.07% for deltamethrin and 1.56% for fenitrothion. Increased activities of cytochrome P450, beta-esterase, and GST enzymes in the resistant strains were revealed in comparison with those of the susceptible strain. In conclusion, readjusted diagnostic doses will help to better understand the susceptibility status of X. cheopis to deltamethrin and fenitrothion. The overproduction of cytochrome P450, beta-esterase, and GST observed on deltamethrin-resistant flea strains suggests metabolic resistance.

    • Supplemental Materials (PDF 1963.9 KB)

Author Notes

The American Society of Tropical Medicine and Hygiene (ASTMH) assisted with publication expenses.

Disclosure: Protocols involving animal handling in the laboratory for flea maintenance were approved by the animal ethics committee of the Institut Pasteur de Madagascar (reference no. 425/2021/IPM/DS/CEA).

Authors’ contributions: Conceptualization: R. Girod, F. N. Raharimalala, and M. Harimalala. Data curation: A. O. Raveloson, F. N. Raharimalala, and M. Harimalala. Formal analysis: A. O. Raveloson, T. Nepomichene, and M. Harimalala. Funding acquisition: R. Girod. Investigation: A. O. Raveloson. Methodology: A. O. Raveloson, F. N. Raharimalala, and M. Harimalala. Project administration: R. Girod. Resources: R. Girod. Supervision: R. Girod and M. Harimalala. Validation: R. Girod and M. Harimalala. Visualization: R. Girod. Writing – original draft preparation: A. O. Raveloson and M. Harimalala. Writing – review & editing: A. O. Raveloson, M. Harimalala, T. Nepomichene, and R. Girod

Current contact information: Annick O. Raveloson, Thiery Nepomichene, Tojo R. Ramihangihajason, Mandimby Rajaonarimanana, Fara N. Raharimalala, and Romain Girod, Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar, E-mails: onimalalaanickr@gmail.com, Jthiery@pasteur.mg, tojor@pasteur.mg, mandimby@pasteur.mg, rfaranantenaina@gmail.com, and romain.girod@pasteur.fr. Mireille Harimalala, Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar, and Ecole Doctorale Science de la Vie et de l’Environnement, Université d’Antananarivo, Antananarivo, Madagascar, E-mail: hmireille@pasteur.mg.

Address correspondence to Annick O. Raveloson, Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar. E-mails: onimalalaannickr@gmail.com or annick@pasteur.mg
  • 1

    Eisen RJ, Gage KL, 2012. Transmission of flea-borne zoonotic agents. Annu Rev Entomol 57: 6182.

  • 2

    Bertherat EG, 2019. Plague around the world. Wkly Epidemiol Rec 94: 289292.

  • 3

    Andrianaivoarimanana V, Piola P, Wagner DM, Rakotomanana F, Maheriniaina V, Andrianalimanana S, Chanteau S, Rahalison L, Ratsitorahina M, Rajerison M, 2019. Trends of human plague, Madagascar, 1998–2016. Emerg Infect Dis 25: 220228.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Chanteau S, 2006. Atlas de la Peste à Madagascar. Paris, France: IRD Editions, Institut Pasteur/AUF.

  • 5

    Coulanges P, Clerc Y, Randrianantoanina E, 1982. Etude de X. cheopis et S. fonquerniei, puces pestigènes malgaches—Mise en évidence de leur résistance aux DDT, Dieldrin et Malathion. Archives de l’Institut. Pasteur de Madagascar 49: 171191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Ratovonjato J, Duchemin J-B, Duplantier J-M, Chanteau S, 2000. Xenopsylla cheopis (Siphonaptera: Xenopsyllinae), puces des foyers ruraux de peste des Hautes Terres malgaches: Niveau de sensibilité au DDT, aux pyréthrinoïdes et aux carbamates après 50 années de lutte chimique. Arch Inst Pasteur Madagascar 66: 912.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Boyer S, Miarinjara A, Elissa N, 2014. Xenopsylla cheopis (Siphonaptera: Pulicidae) susceptibility to deltamethrin in Madagascar. PLoS One 9: e111998.

  • 8

    Miarinjara A, Boyer S, 2016. Current perspectives on plague vector control in Madagascar: Susceptibility status of Xenopsylla cheopis to 12 insecticides. PLoS Negl Trop Dis 10: e0004414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Rahelinirina S, Harimalala M, Rakotoniaina J, Randriamanantsoa MG, Dentinger C, Zohdy S, Girod R, Rajerison M, 2022. Tracking of mammals and their fleas for plague surveillance in Madagascar, 2018-2019. Am J Trop Med Hyg 106: 16011609.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Miarinjara A, Vergain J, Kavaruganda JM, Rajerison M, Boyer S, 2017. Plague risk in vulnerable community: Assessment of Xenopsylla cheopis susceptibility to insecticides in Malagasy prisons. Infect Dis Poverty 6: 141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Rivero A, Vézilier J, Weill M, Read AF, Gandon S, 2010. Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLOS Pathog 6: e1001000.

  • 12

    Brogdon WG, McAllister JC, 1998. Insecticide resistance and vector control. Emerg Infect Dis 4: 605613.

  • 13

    Alderson J, Quastel M, Wilson E, Bellamy D, 2020. Factors influencing the re-emergence of plague in Madagascar. Emerg Top Life Sci 4: 411421.

  • 14

    World Health Organization, 1970. Insecticide resistance and vector control. Seventeenth Report of the WHO Expert Committee on Insecticides. World Health Organ Tech Rep Ser 443: 1279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Patel TB, Bhatia SC, Deobhankar RB, 1960. A confirmed case of DDT-resistance in Xenopsylla cheopis in India. Bull World Health Organ 23: 301312.

  • 16

    World Health Organization, 1958. Insect Resistance and Vector Control. Eighth Report of the Expert Committee on Insecticides. Geneva, Switzerland: WHO, 67.

  • 17

    World Health Organization, 1980. Resistance of Vectors of Disease to Pesticides: Fifth Report of the WHO Expert Committee on Vector Biology and Control. Geneva, Switzerland: WHO.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    World Health Organization, 1986. Resistance of Vectors and Reservoirs of Diseases to Pesticides: Tenth Report of the WHO Expert Committee on Vector Biology and Control. Geneva, Switzerland: WHO.

    • PubMed
    • Export Citation
  • 19

    Randriamaherijaona S, Velonirina HJ, Boyer S, 2016. Susceptibility status of Anopheles arabiensis (Diptera: Culicidae) commonly used as biological materials for evaluations of malaria vector control tools in Madagascar. Malar J 15: 338.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Fontenille D, Coulanges P, 1987. Notes sur la sensibilité des puces Xenopsylla cheopis de la région d’Antananarivo à la déltamethrine et au propoxur. Arch Inst Pasteur Madagascar 53: 209213.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    World Health Organization, 1998. Test Procedures for Insecticide Resistance Monitoring in Malaria Vectors, Bioefficacy and Persistence of Insecticides on Treated Surfaces. Geneva, Switzerland: WHO.

    • PubMed
    • Export Citation
  • 22

    Hutton SM et al., 2023. Knockdown resistance mutations are common and widely distributed in Xenopsylla cheopis fleas that transmit plague in Madagascar. PLOS Negl Trop Dis 17: e0011401.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Ilg T, Schmalz S, Werr M, Cramer J, 2010. Acetylcholinesterases of the cat flea Ctenocephalides felis: Identification of two distinct genes and biochemical characterization of recombinant and in vivo enzyme activities. Insect Biochem Mol Biol 40: 153164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Brunet S, Le Meter C, Murray M, Soll M, Audonnet J-C, 2009. rdl gene polymorphism and sequence analysis and relation to in vivo fipronil susceptibility in strains of the cat flea. J Econ Entomol 102: 366372.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Li X, Schuler MA, Berenbaum MR, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231253.

  • 26

    Enayati AA, Ranson H, Hemingway J, 2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: 38.

  • 27

    Ghavami MB, Haghi FP, Alibabaei Z, Enayati AA, Vatandoost H, 2018. First report of target site insensitivity to pyrethroids in human flea, Pulex irritans (Siphonaptera: Pulicidae). Pestic Biochem Physiol 146: 97105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Rust MK et al., 2015. Susceptibility of adult cat fleas (Siphonaptera: Pulicidae) to insecticides and status of insecticide resistance mutations at the rdl and knockdown resistance loci. Parasitol Res 114 (Suppl 1 ):718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Bossard RL, Hinkle NC, Rust MK, 1998. Review of insecticide resistance in cat fleas (Siphonaptera: Pulicidae). J Med Entomol 35: 415422.

  • 30

    Ames AD, 2011. DDT and Pyrethroid Resistance in Xenopsylla cheopis (Rothschild), the Oriental Rat Flea in Northern Uganda. PhD Thesis, Department of Microbiology, Immunology, and Pathology, Colorado State University: Fort Collins, CO.

    • PubMed
    • Export Citation
  • 31

    Miarinjara A, Rahelinirina S, Razafimahatratra NL, Girod R, Rajerison M, Boyer S, 2019. Field assessment of insecticide dusting and bait station treatment impact against rodent flea and house flea species in the Madagascar plague context. PLOS Negl Trop Dis 13: e0007604.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Ratovonjato J, Duchemin J-B, Chanteau S, 2000. Méthode optimisée d’élevage de pulicidés (Xenopsylla cheopis et Synopsyllus fonquerniei). Arch Inst Pasteur Madagascar 66: 7577.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Finney DJ, 1952. Probit analysis, 2nd edition. J Inst Actuaries 78: 388390.

  • 34

    Mann HB, Whitney DR, 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18: 5060.

  • 35

    R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

  • 36

    Busvine JR, Lien J, 1961. Methods for measuring insecticide susceptibility levels in bed-bugs, cone-nosed bugs, fleas and lice. Bull World Health Organ 24: 509517.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Brogdon WG, Chan A, 2010. Guidelines for evaluating insecticide resistance in vectors using the CDC bottle bioassay. Methods in Anopheles Research. Atlanta, GA: CDC.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Hemingway J, 1995. Efficacy of etofenprox against insecticide susceptible and resistant mosquito strains containing characterized resistance mechanisms. Med Vet Entomol 9: 423426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Seidy S, Tavassoli M, Malekifard F, 2022. Pyrethroids resistance in Pulex irritans and Ctenocephalides canis in west and northwest Iran. Vet Res Forum 13: 529535.

  • 40

    Brogdon WG, 1989. Biochemical resistance detection: An alternative to bioassay. Parasitol Today 5: 5660.

  • 41

    Boyer S, 2006. Résistance Métabolique des Larves de Moustiques Aux Insecticides: Conséquences Environnementales. Thesis, Université Joseph-Fourier–Grenoble I, Grenoble, France.

    • PubMed
    • Export Citation
  • 42

    Ugaki M, Shono T, Fukami J-I, 1985. Metabolism of fenitrothion by organophosphorus-resistance and susceptibility house flies, Musca domestica L. Pestic Biochem Phys 23: 3340.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Pethuan S, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnoparut P, 2007. Biochemical studies of insecticide resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand. Trop Biomed 24: 715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Hemingway J, Miyamoto J, Herath PRJ, 1991. A possible novel link between organophosphorus and DDT insecticide resistance genes in Anopheles: Supporting evidence from fenitrothion metabolism studies. Pestic Biochem Phys 39: 4956.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Bass C, Schroeder I, Turberg A, Field LM, Williamson MS, 2004. Identification of the rdl mutation in laboratory and field strains of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Pest Manag Sci 60: 11571162.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 2495 2495 1656
Full Text Views 17 17 10
PDF Downloads 21 21 8
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save