Subudhi BB, Chattopadhyay S, Mishra P, Kumar A, 2018. Current strategies for inhibition of chikungunya infection. Viruses 10: 235.
Amdekar S, Parashar D, Alagarasu K, 2017. Chikungunya virus-induced arthritis: Role of host and viral factors in the pathogenesis. Viral Immunol 30: 691–702.
Schwartz O, Albert ML, 2010. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8: 491–500.
Suhrbier A, La Linn M, 2004. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 16: 374–379.
Kraemer MU et al., 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4: e08347.
Lam SK, Chua KB, Hooi PS, Rahimah MA, Kumari S, Tharmaratnam M, Chuah SK, Smith DW, Sampson IA, 2001. Chikungunya infection—An emerging disease in Malaysia. Southeast Asian J Trop Med Public Health 32: 447–451.
Chandak NH, Kashyap RS, Kabra D, Karandikar P, Saha SS, Morey SH, Purohit HJ, Taori GM, Daginawala HF, 2009. Neurological complications of Chikungunya virus infection. Neurol India 57: 177–180.
Chatterjee SN, Chakravarti SK, Mitra AC, Sarkar JK, 1965. Virological investigation of cases with neurological complications during the outbreak of haemorrhagic fever in Calcutta. J Indian Med Assoc 45: 314–316.
Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O, Quenel P, Germonneau P, Quatresous I, 2009. Atypical Chikungunya virus infections: Clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Reunion. Epidemiol Infect 137: 534–541.
Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T, 2018. The neurological complications of chikungunya virus: A systematic review. Rev Med Virol 28: e1978.
Saswat T, Kumar A, Kumar S, Mamidi P, Muduli S, Debata NK, Pal NS, Pratheek BM, Chattopadhyay S, Chattopadhyay S, 2015. High rates of co-infection of dengue and chikungunya virus in Odisha and Maharashtra, India during 2013. Infect Genet Evol 35: 134–141.
Villamil-Gomez WE, Gonzalez-Camargo O, Rodriguez-Ayubi J, Zapata-Serpa D, Rodriguez-Morales AJ, 2016. Dengue, chikungunya and Zika co-infection in a patient from Colombia. J Infect Public Health 9: 684–686.
Edwards T, Signor LDCC, Williams C, Donis E, Cuevas LE, Adams ER, 2016. Co-infections with chikungunya and dengue viruses, Guatemala, 2015. Emerg Infect Dis 22: 2003–2005.
de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RFO, 2022. A review on chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses 14: 969.
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR, 2019. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 13: e0007213.
Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MU, Scott TW, Wint GR, Smith DL, Hay SI, 2015. The many projected futures of dengue. Nat Rev Microbiol 13: 230–239.
Wong KZ, Chu JJH, 2018. The interplay of viral and host factors in chikungunya virus infection: Targets for antiviral strategies. Viruses 10: 294.
Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P, 2016. Epidemiology of chikungunya in the Americas. J Infect Dis 214: S441–S445.
Suhrbier A, Jaffar-Bandjee M-C, Gasque P, 2012. Arthritogenic alphaviruses—An overview. Nat Rev Rheumatol 8: 420.
Weaver SC, Lecuit M, 2015. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 372: 1231–1239.
Khoury VJ, Camilo PR, 2016. Chikungunya virus (CHIKV): What can be expected after the acute phase? Reumatol Clin 12: 1–3.
Brostolin da Costa D, De-Carli AD, Probst LF, Grande AJ, Guerrero ATG, 2021. Oral manifestations in chikungunya patients: A systematic review. PLoS Negl Trop Dis 15: e0009401.
Watson H, Tritsch SR, Encinales L, Cadena A, Cure C, Ramirez AP, Mendoza AR, Chang AY, 2020. Stiffness, pain, and joint counts in chronic chikungunya disease: Relevance to disability and quality of life. Clin Rheumatol 39: 1679–1686.
Simon F et al., 2014. French guidelines for the management of chikungunya (acute and persistent presentations). Med Mal Infect 45: 243–263.
Teng T-S, Kam Y-W, Tan JJ, Ng LF, 2011. Host response to Chikungunya virus and perspectives for immune-based therapies. Future Virol 6: 975–984.
da Cunha RV, Trinta KS, 2017. Chikungunya virus: Clinical aspects and treatment–—A Review. Mem Inst Oswaldo Cruz 112: 523–531.
Parashar D, Cherian S, 2014. Antiviral perspectives for chikungunya virus. Biomed Res Int 2014: 631642.
Powers AM, Logue CH, 2007. Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus. J Gen Virol 88: 2363–2377.
De Lamballerie X, Boisson V, Reynier JC, Enault S, Charrel RN, Flahault A, Roques P, Le Grand R, 2008. On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 8: 837–839.
Thiberville SD, Boisson V, Gaudart J, Simon F, Flahault A, de Lamballerie X, 2013. Chikungunya fever: A clinical and virological investigation of outpatients on Reunion Island, South-West Indian Ocean. PLoS Negl Trop Dis 7: e2004.
Ravindran V, Alias G, 2017. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: A 24-week randomized controlled open label study. Clin Rheumatol 36: 1335–1340.
Sanchez-Duque JA, Orozco-Hernandez JP, Rodriguez-Morales AJ, 2015. Rheumatic manifestations in patients with chikungunya infection: Comment on the article by Arroyo-Avila and Vila. P R Health Sci J 34: 231–232.
Bouquillard E, Fianu A, Bangil M, Charlette N, Ribera A, Michault A, Favier F, Simon F, Flipo RM, 2018. Rheumatic manifestations associated with Chikungunya virus infection: A study of 307 patients with 32-month follow-up (RHUMATOCHIK study). Joint Bone Spine 85: 207–210.
Kovacikova K, van Hemert MJ, 2020. Small-molecule inhibitors of chikungunya virus: Mechanisms of action and antiviral drug resistance. Antimicrob Agents Chemother 64: e01788-20.
Hucke FIL, Bugert JJ, 2020. Current and promising antivirals against chikungunya virus. Front Public Health 8: 618624.
Ghildiyal R, Gabrani R, 2020. Antiviral therapeutics for chikungunya virus. Expert Opin Ther Pat 30: 467–480.
Rabelo VW, Paixao I, Abreu PA, 2020. Targeting chikungunya virus by computational approaches: From viral biology to the development of therapeutic strategies. Expert Opin Ther Targets 24: 63–78.
Gallegos KM, Drusano GL, D Argenio DZ, Brown AN, 2016. Chikungunya virus: In vitro response to combination therapy with ribavirin and interferon Alfa 2a. J Infect Dis 214: 1192–1197.
Franco EJ, Tao X, Hanrahan KC, Zhou J, Bulitta JB, Brown AN, 2021. Combination regimens of favipiravir plus interferon alpha inhibit chikungunya virus replication in clinically relevant human cell lines. Microorganisms 9: 307.
Smalley C, Erasmus JH, Chesson CB, Beasley DWC, 2016. Status of research and development of vaccines for chikungunya. Vaccine 34: 2976–2981.
Ly H, 2024. Ixchiq (VLA1553): The first FDA-approved vaccine to prevent disease caused by Chikungunya virus infection. Virulence 15: 2301573.
Mohamed Ali S, Amroun A, de Lamballerie X, Nougairède A, 2018. Evolution of chikungunya virus in mosquito cells. Sci Rep 8: 16175.
Strauss JH, Strauss EG, 1994. The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev 58: 491–562.
Mathur K, Anand A, Dubey SK, Sanan-Mishra N, Bhatnagar RK, Sunil S, 2016. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity. Sci Rep 6: 38065.
Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, de Lamballerie X, 2013. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 99: 345–370.
Cheng RH, Kuhn RJ, Olson NH, Rossmann MG, Choi HK, Smith TJ, Baker TS, 1995. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80: 621–630.
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW, 2015. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 96: 2483–2500.
Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG, 2010. Structural changes of envelope proteins during alphavirus fusion. Nature 468: 705–708.
Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA, 2010. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712.
Snyder AJ, Mukhopadhyay S, 2012. The alphavirus E3 glycoprotein functions in a clade-specific manner. J Virol 86: 13609–13620.
Schnierle BS, 2019. Cellular attachment and entry factors for chikungunya virus. Viruses 11: 1078.
Sanz MA, Carrasco L, 2001. Sindbis virus variant with a deletion in the 6K gene shows defects in glycoprotein processing and trafficking: Lack of complementation by a wild-type 6K gene in trans. J Virol 75: 7778–7784.
Dudha N, Rana J, Rajasekharan S, Gabrani R, Gupta A, Chaudhary VK, Gupta S, 2015. Host-pathogen interactome analysis of Chikungunya virus envelope proteins E1 and E2. Virus Genes 50: 200–209.
Garoff H, Frischauf AM, Simons K, Lehrach H, Delius H, 1980. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288: 236–241.
Wahlberg JM, Garoff H, 1992. Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J Cell Biol 116: 339–348.
Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM, 2013. BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 438: 37–49.
Sreejith R, Rana J, Dudha N, Kumar K, Gabrani R, Sharma SK, Gupta A, Vrati S, Chaudhary VK, Gupta S, 2012. Mapping interactions of chikungunya virus nonstructural proteins. Virus Res 169: 231–236.
Rupp JC, Jundt N, Hardy RW, 2011. Requirement for the amino-terminal domain of sindbis virus nsP4 during virus infection. J Virol 85: 3449–3460.
Wang YF, Sawicki SG, Sawicki DL, 1994. Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 68: 6466–6475.
Hahn YS, Grakoui A, Rice CM, Strauss EG, Strauss JH, 1989. Mapping of RNA- temperature-sensitive mutants of Sindbis virus: Complementation group F mutants have lesions in nsP4. J Virol 63: 1194–1202.
Robinson MC, 1955. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–53. I. Clinical features. Trans R Soc Trop Med Hyg 49: 28–32.
Carey DE, 1971. Chikungunya and dengue: A case of mistaken identity? J Hist Med Allied Sci 26: 243–262.
Weaver SC, Forrester NL, 2015. Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Res 120: 32–39.
Weaver SC, Chen R, Diallo M, 2020. Chikungunya virus: Role of vectors in emergence from enzootic cycles. Annu Rev Entomol 65: 313–332.
Sergon K et al., 2008. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am J Trop Med Hyg 78: 333–337.
Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH, Kelly CHL, Sang R, Sergon K, Breiman R, Powers AM, 2008. Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa. J Gen Virol 89: 2754–2760.
Pyke AT, Moore PR, McMahon J, 2018. New insights into chikungunya virus emergence and spread from Southeast Asia. Emerg Microbes Infect 7: 26.
Deeba F, Haider MSH, Ahmed A, Tazeen A, Faizan MI, Salam N, Hussain T, Alamery SF, Parveen S, 2020. Global transmission and evolutionary dynamics of the chikungunya virus. Epidemiol Infect 148: e63.
Wimalasiri-Yapa B et al., 2019. Chikungunya virus in Asia-Pacific: A systematic review. Emerg Microbes Infect 8: 70–79.
Dileep M, Priya S, Tathagata B, Jeram P, Karaikurichi VR, 2008. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg Infect Dis J 14: 412.
Staples JE, Breiman RF, Powers AM, 2009. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin Infect Dis 49: 942–948.
Control ECfDPa, 2023. Chikungunya Worldwide Overview. Available at: https://www.ecdc.europa.eu/en/chikungunya-monthly. Accessed August 18, 2023.
Elbers AR, Koenraadt CJ, Meiswinkel R, 2015. Mosquitoes and Culicoides biting midges: Vector range and the influence of climate change. Rev Sci Tech 34: 123–137.
Carrington LB, Simmons CP, 2014. Human to mosquito transmission of dengue viruses. Front Immunol 5: 290.
Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100–103.
Tabachnick WJ, Powell JR, 1979. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res 34: 215–229.
Juliano SA, Lounibos LP, O’Meara GF, 2004. A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: Differences between sites of coexistence and exclusion? Oecologia 139: 583–593.
Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC, 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci USA 108: 7872–7877.
Vega-Rúa A, Marconcini M, Madec Y, Manni M, Carraretto D, Gomulski LM, Gasperi G, Failloux A-B, Malacrida AR, 2020. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun Biol 3: 326.
Thomas S, Rai J, John L, Schaefer S, Pützer BM, Herchenröder O, 2013. Chikungunya virus capsid protein contains nuclear import and export signals. Virol J 10: 269–13.
Jacobs SC, Taylor A, Herrero LJ, Mahalingam S, Fazakerley JK, 2017. Mutation of a conserved nuclear export sequence in chikungunya virus capsid protein disrupts host cell nuclear import. Viruses 9: 306.
Zhang R et al., 2018. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557: 570–574.
Gardner CL, Hritz J, Sun C, Vanlandingham DL, Song TY, Ghedin E, Higgs S, Klimstra WB, Ryman KD, 2014. Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: A model for rational arboviral vaccine design. PLoS Negl Trop Dis 8: e2719.
Gardner CL, Ebel GD, Ryman KD, Klimstra WB, 2011. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci USA 108: 16026–16031.
Silva LA, Khomandiak S, Ashbrook AW, Weller R, Heise MT, Morrison TE, Dermody TS, 2014. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol 88: 2385–2397.
Ashbrook AW, Burrack KS, Silva LA, Montgomery SA, Heise MT, Morrison TE, Dermody TS, 2014. Residue 82 of the chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J Virol 88: 12180–12192.
Wintachai P et al., 2012. Identification of prohibitin as a Chikungunya virus receptor protein. J Med Virol 84: 1757–1770.
Wintachai P, Thuaud F, Basmadjian C, Roytrakul S, Ubol S, Désaubry L, Smith DR, 2015. Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol Immunol 59: 129–141.
Kondratowicz AS et al., 2011. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci USA 108: 8426–8431.
Umetsu SE et al., 2005. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol 6: 447–454.
Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK, 2005. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6: 1245–1252.
Kirui J, Abidine Y, Lenman A, Islam K, Gwon Y-D, Lasswitz L, Evander M, Bally M, Gerold G, 2021. The phosphatidylserine receptor TIM-1 enhances authentic chikungunya virus cell entry. Cells 10: 1828.
Jemielity S et al., 2013. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLOS Pathog 9: e1003232.
Lasswitz L, Zapatero-Belinchón FJ, Moeller R, Hülskötter K, Laurent T, Carlson L-A, Goffinet C, Simmons G, Baumgärtner W, Gerold G, 2022. The tetraspanin CD81 is a host factor for chikungunya virus replication. mBio 13: e00731-22.
Carissimo G, Chan Y-H, Utt A, Chua T-K, Bakar FA, Merits A, Ng LFP, 2019. VCP/p97 is a proviral host factor for replication of chikungunya virus and other alphaviruses. Front Microbiol 10: 2236.
Meertens L et al., 2019. FHL1 is a major host factor for chikungunya virus infection. Nature 574: 259–263.
Lobaina Y, Perera Y, 2019. Implication of B23/NPM1 in viral infections, potential uses of B23/NPM1 inhibitors as antiviral therapy. Infect Disord Drug Targets 19: 2–16.
Pradeep P, Sivakumar KC, Sreekumar E, 2023. Host factor nucleophosmin 1 (NPM1/B23) exerts antiviral effects against chikungunya virus by its interaction with viral nonstructural protein 3. Microbiol Spectr 11: e0537122.
Votteler J, Sundquist WI, 2013. Virus budding and the ESCRT pathway. Cell Host Microbe 14: 232–241.
Henne WM, Buchkovich NJ, Emr SD, 2011. The ESCRT pathway. Dev Cell 21: 77–91.
Torii S et al., 2020. Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. J Biol Chem 295: 7941–7957.
Petitdemange C, Wauquier N, Vieillard V, 2015. Control of immunopathology during chikungunya virus infection. J Allergy Clin Immunol 135: 846–855.
Suzuki Y, 2023. Interferon-induced restriction of chikungunya virus infection. Antiviral Res 210: 105487.
Schilte C, Buckwalter MR, Laird ME, Diamond MS, Schwartz O, Albert ML, 2012. Cutting edge: Independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to chikungunya infection. J Immunol 188: 2967–2971.
Gois BM et al., 2022. Regulatory T cells in acute and chronic human chikungunya infection. Microbes Infect 24: 104927.
Lum FM, Ng LF, 2015. Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral Res 120: 165–174.
Traverse EM, Millsapps EM, Underwood EC, Hopkins HK, Young M, Barr KL, 2022. Chikungunya immunopathology as it presents in different organ systems. Viruses 14: 1786.
Ng LFP, 2017. Immunopathology of chikungunya virus infection: Lessons learned from patients and animal models. Annu Rev Virol 4: 413–427.
Poo YS, Nakaya H, Gardner J, Larcher T, Schroder WA, Le TT, Major LD, Suhrbier A, 2014. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J Virol 88: 6862–6872.
Poh CM, Chan Y-H, Ng LF, 2020. Role of T cells in chikungunya virus infection and utilizing their potential in anti-viral immunity. Front Immunol 11: 287.
Hoarau JJ et al., 2010. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184: 5914–5927.
Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, Leroy EM, 2011. The acute phase of chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204: 115–123.
Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT, 2012. Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines 11: 1087–1101.
Gasque P, Couderc T, Lecuit M, Roques P, Ng LF, 2015. Chikungunya virus pathogenesis and immunity. Vector Borne Zoonotic Dis 15: 241–249.
Sourisseau M et al., 2007. Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89.
Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P, Leroy EM, Vieillard V, 2011. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog 7: e1002268.
Teo T-H, Lum F-M, Claser C, Lulla V, Lulla A, Merits A, Rénia L, Ng LF, 2013. A pathogenic role for CD4+ T cells during chikungunya virus infection in mice. J Immunol 190: 259–269.
Panning M, Grywna K, van Esbroeck M, Emmerich P, Drosten C, 2008. Chikungunya fever in travelers returning to Europe from the Indian Ocean region, 2006. Emerg Infect Dis 14: 416–422.
Kam YW, Simarmata D, Chow A, Her Z, Teng TS, Ong EK, Renia L, Leo YS, Ng LF, 2012. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J Infect Dis 205: 1147–1154.
Couderc T, Khandoudi N, Grandadam M, Visse C, Gangneux N, Bagot S, Prost JF, Lecuit M, 2009. Prophylaxis and therapy for chikungunya virus infection. J Infect Dis 200: 516–523.
Brehin AC, Rubrecht L, Navarro-Sanchez ME, Marechal V, Frenkiel MP, Lapalud P, Laune D, Sall AA, Despres P, 2008. Production and characterization of mouse monoclonal antibodies reactive to Chikungunya envelope E2 glycoprotein. Virology 371: 185–195.
Kam YW et al., 2012. Early neutralizing IgG response to chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med 4: 330–343.
Lee CY et al., 2011. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLoS Pathog 7: e1002390.
Aoyama I, Uno K, Yumisashi T, Takasaki T, Lim CK, Kurane I, Kase T, Takahashi K, 2010. A case of chikungunya fever imported from India to Japan, follow-up of specific IgM and IgG antibodies over a 6-month period. Jpn J Infect Dis 63: 65–66.
Natrajan MS, Rojas A, Waggoner JJ, 2019. Beyond fever and pain: Diagnostic methods for chikungunya virus. J Clin Microbiol 57: e00350-19.
Reid SP, Tritsch SR, Kota K, Chiang CY, Dong L, Kenny T, Brueggemann EE, Ward MD, Cazares LH, Bavari S, 2015. Sphingosine kinase 2 is a chikungunya virus host factor co-localized with the viral replication complex. Emerg Microbes Infect 4: e61.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 990 | 990 | 332 |
Full Text Views | 42 | 42 | 22 |
PDF Downloads | 48 | 48 | 26 |
Chikungunya virus (CHIKV), prevalent in tropical regions, is known for causing frequent outbreaks, particularly in Central Africa, South America, and Southeast Asia. It is an arbovirus transmitted by the Aedes (Ae.) aegypti and Ae. albopictus mosquitoes. Infections lead to severe joint and muscle pain, which can linger and significantly impair an individual’s health, quality of life, and economic stability. Recent climatic changes and the globalization of travel have facilitated the worldwide spread of these mosquitoes. Currently, no U.S. Food and Drug Administration (FDA) approved drug is available for treating CHIKV infection. Recently, the FDA approved a live, attenuated vaccine called Ixchiq. However, this vaccine has been linked to side effects, leading the FDA to mandate additional post-marketing studies to assess the risk of severe adverse reactions similar to the virus. An emerging strategy in drug development focuses on targeting host factors that the virus exploits rather than the viral proteins themselves. This review explores the interactions between CHIKV and host factors that could be potential therapeutic targets. Despite progress in understanding the life cycle of CHIKV, the immune system’s role in combating the virus still needs to be fully understood. Investigating treatments that enhance the host’s immune response may offer new paths to combating CHIKV.
Authors’ contributions: V. R. M. T. Balasubramaniam conceptualized and designed the manuscript. N. A. A. Binti Adnan, N. Kalam, and G. Lim Zi Jiunn wrote and prepared the manuscript. T. V. Komarasamy edited the manuscript. N. A. A. Binti Adnan created all the figures. V. R. M. T. Balasubramaniam and N. Kalam critically revised the manuscript. All the authors approved the final version.
Current contact information: Nur Amelia Azreen Binti Adnan, Nida Kalam, Gabriel Lim Zi Jiunn, Thamil Vaani Komarasamy, and Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia. E-mails: ameliaadnan88@gmail.com, nida.kalam@monash.edu, gabrieltheultimate@gmail.com, thamil_vaani@live.com, and vinod.balasubramaniam@monash.edu.
Subudhi BB, Chattopadhyay S, Mishra P, Kumar A, 2018. Current strategies for inhibition of chikungunya infection. Viruses 10: 235.
Amdekar S, Parashar D, Alagarasu K, 2017. Chikungunya virus-induced arthritis: Role of host and viral factors in the pathogenesis. Viral Immunol 30: 691–702.
Schwartz O, Albert ML, 2010. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8: 491–500.
Suhrbier A, La Linn M, 2004. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 16: 374–379.
Kraemer MU et al., 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4: e08347.
Lam SK, Chua KB, Hooi PS, Rahimah MA, Kumari S, Tharmaratnam M, Chuah SK, Smith DW, Sampson IA, 2001. Chikungunya infection—An emerging disease in Malaysia. Southeast Asian J Trop Med Public Health 32: 447–451.
Chandak NH, Kashyap RS, Kabra D, Karandikar P, Saha SS, Morey SH, Purohit HJ, Taori GM, Daginawala HF, 2009. Neurological complications of Chikungunya virus infection. Neurol India 57: 177–180.
Chatterjee SN, Chakravarti SK, Mitra AC, Sarkar JK, 1965. Virological investigation of cases with neurological complications during the outbreak of haemorrhagic fever in Calcutta. J Indian Med Assoc 45: 314–316.
Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O, Quenel P, Germonneau P, Quatresous I, 2009. Atypical Chikungunya virus infections: Clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Reunion. Epidemiol Infect 137: 534–541.
Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T, 2018. The neurological complications of chikungunya virus: A systematic review. Rev Med Virol 28: e1978.
Saswat T, Kumar A, Kumar S, Mamidi P, Muduli S, Debata NK, Pal NS, Pratheek BM, Chattopadhyay S, Chattopadhyay S, 2015. High rates of co-infection of dengue and chikungunya virus in Odisha and Maharashtra, India during 2013. Infect Genet Evol 35: 134–141.
Villamil-Gomez WE, Gonzalez-Camargo O, Rodriguez-Ayubi J, Zapata-Serpa D, Rodriguez-Morales AJ, 2016. Dengue, chikungunya and Zika co-infection in a patient from Colombia. J Infect Public Health 9: 684–686.
Edwards T, Signor LDCC, Williams C, Donis E, Cuevas LE, Adams ER, 2016. Co-infections with chikungunya and dengue viruses, Guatemala, 2015. Emerg Infect Dis 22: 2003–2005.
de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RFO, 2022. A review on chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses 14: 969.
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR, 2019. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 13: e0007213.
Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MU, Scott TW, Wint GR, Smith DL, Hay SI, 2015. The many projected futures of dengue. Nat Rev Microbiol 13: 230–239.
Wong KZ, Chu JJH, 2018. The interplay of viral and host factors in chikungunya virus infection: Targets for antiviral strategies. Viruses 10: 294.
Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P, 2016. Epidemiology of chikungunya in the Americas. J Infect Dis 214: S441–S445.
Suhrbier A, Jaffar-Bandjee M-C, Gasque P, 2012. Arthritogenic alphaviruses—An overview. Nat Rev Rheumatol 8: 420.
Weaver SC, Lecuit M, 2015. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 372: 1231–1239.
Khoury VJ, Camilo PR, 2016. Chikungunya virus (CHIKV): What can be expected after the acute phase? Reumatol Clin 12: 1–3.
Brostolin da Costa D, De-Carli AD, Probst LF, Grande AJ, Guerrero ATG, 2021. Oral manifestations in chikungunya patients: A systematic review. PLoS Negl Trop Dis 15: e0009401.
Watson H, Tritsch SR, Encinales L, Cadena A, Cure C, Ramirez AP, Mendoza AR, Chang AY, 2020. Stiffness, pain, and joint counts in chronic chikungunya disease: Relevance to disability and quality of life. Clin Rheumatol 39: 1679–1686.
Simon F et al., 2014. French guidelines for the management of chikungunya (acute and persistent presentations). Med Mal Infect 45: 243–263.
Teng T-S, Kam Y-W, Tan JJ, Ng LF, 2011. Host response to Chikungunya virus and perspectives for immune-based therapies. Future Virol 6: 975–984.
da Cunha RV, Trinta KS, 2017. Chikungunya virus: Clinical aspects and treatment–—A Review. Mem Inst Oswaldo Cruz 112: 523–531.
Parashar D, Cherian S, 2014. Antiviral perspectives for chikungunya virus. Biomed Res Int 2014: 631642.
Powers AM, Logue CH, 2007. Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus. J Gen Virol 88: 2363–2377.
De Lamballerie X, Boisson V, Reynier JC, Enault S, Charrel RN, Flahault A, Roques P, Le Grand R, 2008. On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 8: 837–839.
Thiberville SD, Boisson V, Gaudart J, Simon F, Flahault A, de Lamballerie X, 2013. Chikungunya fever: A clinical and virological investigation of outpatients on Reunion Island, South-West Indian Ocean. PLoS Negl Trop Dis 7: e2004.
Ravindran V, Alias G, 2017. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: A 24-week randomized controlled open label study. Clin Rheumatol 36: 1335–1340.
Sanchez-Duque JA, Orozco-Hernandez JP, Rodriguez-Morales AJ, 2015. Rheumatic manifestations in patients with chikungunya infection: Comment on the article by Arroyo-Avila and Vila. P R Health Sci J 34: 231–232.
Bouquillard E, Fianu A, Bangil M, Charlette N, Ribera A, Michault A, Favier F, Simon F, Flipo RM, 2018. Rheumatic manifestations associated with Chikungunya virus infection: A study of 307 patients with 32-month follow-up (RHUMATOCHIK study). Joint Bone Spine 85: 207–210.
Kovacikova K, van Hemert MJ, 2020. Small-molecule inhibitors of chikungunya virus: Mechanisms of action and antiviral drug resistance. Antimicrob Agents Chemother 64: e01788-20.
Hucke FIL, Bugert JJ, 2020. Current and promising antivirals against chikungunya virus. Front Public Health 8: 618624.
Ghildiyal R, Gabrani R, 2020. Antiviral therapeutics for chikungunya virus. Expert Opin Ther Pat 30: 467–480.
Rabelo VW, Paixao I, Abreu PA, 2020. Targeting chikungunya virus by computational approaches: From viral biology to the development of therapeutic strategies. Expert Opin Ther Targets 24: 63–78.
Gallegos KM, Drusano GL, D Argenio DZ, Brown AN, 2016. Chikungunya virus: In vitro response to combination therapy with ribavirin and interferon Alfa 2a. J Infect Dis 214: 1192–1197.
Franco EJ, Tao X, Hanrahan KC, Zhou J, Bulitta JB, Brown AN, 2021. Combination regimens of favipiravir plus interferon alpha inhibit chikungunya virus replication in clinically relevant human cell lines. Microorganisms 9: 307.
Smalley C, Erasmus JH, Chesson CB, Beasley DWC, 2016. Status of research and development of vaccines for chikungunya. Vaccine 34: 2976–2981.
Ly H, 2024. Ixchiq (VLA1553): The first FDA-approved vaccine to prevent disease caused by Chikungunya virus infection. Virulence 15: 2301573.
Mohamed Ali S, Amroun A, de Lamballerie X, Nougairède A, 2018. Evolution of chikungunya virus in mosquito cells. Sci Rep 8: 16175.
Strauss JH, Strauss EG, 1994. The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev 58: 491–562.
Mathur K, Anand A, Dubey SK, Sanan-Mishra N, Bhatnagar RK, Sunil S, 2016. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity. Sci Rep 6: 38065.
Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, de Lamballerie X, 2013. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 99: 345–370.
Cheng RH, Kuhn RJ, Olson NH, Rossmann MG, Choi HK, Smith TJ, Baker TS, 1995. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80: 621–630.
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW, 2015. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 96: 2483–2500.
Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG, 2010. Structural changes of envelope proteins during alphavirus fusion. Nature 468: 705–708.
Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA, 2010. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712.
Snyder AJ, Mukhopadhyay S, 2012. The alphavirus E3 glycoprotein functions in a clade-specific manner. J Virol 86: 13609–13620.
Schnierle BS, 2019. Cellular attachment and entry factors for chikungunya virus. Viruses 11: 1078.
Sanz MA, Carrasco L, 2001. Sindbis virus variant with a deletion in the 6K gene shows defects in glycoprotein processing and trafficking: Lack of complementation by a wild-type 6K gene in trans. J Virol 75: 7778–7784.
Dudha N, Rana J, Rajasekharan S, Gabrani R, Gupta A, Chaudhary VK, Gupta S, 2015. Host-pathogen interactome analysis of Chikungunya virus envelope proteins E1 and E2. Virus Genes 50: 200–209.
Garoff H, Frischauf AM, Simons K, Lehrach H, Delius H, 1980. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288: 236–241.
Wahlberg JM, Garoff H, 1992. Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J Cell Biol 116: 339–348.
Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM, 2013. BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 438: 37–49.
Sreejith R, Rana J, Dudha N, Kumar K, Gabrani R, Sharma SK, Gupta A, Vrati S, Chaudhary VK, Gupta S, 2012. Mapping interactions of chikungunya virus nonstructural proteins. Virus Res 169: 231–236.
Rupp JC, Jundt N, Hardy RW, 2011. Requirement for the amino-terminal domain of sindbis virus nsP4 during virus infection. J Virol 85: 3449–3460.
Wang YF, Sawicki SG, Sawicki DL, 1994. Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 68: 6466–6475.
Hahn YS, Grakoui A, Rice CM, Strauss EG, Strauss JH, 1989. Mapping of RNA- temperature-sensitive mutants of Sindbis virus: Complementation group F mutants have lesions in nsP4. J Virol 63: 1194–1202.
Robinson MC, 1955. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–53. I. Clinical features. Trans R Soc Trop Med Hyg 49: 28–32.
Carey DE, 1971. Chikungunya and dengue: A case of mistaken identity? J Hist Med Allied Sci 26: 243–262.
Weaver SC, Forrester NL, 2015. Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Res 120: 32–39.
Weaver SC, Chen R, Diallo M, 2020. Chikungunya virus: Role of vectors in emergence from enzootic cycles. Annu Rev Entomol 65: 313–332.
Sergon K et al., 2008. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am J Trop Med Hyg 78: 333–337.
Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH, Kelly CHL, Sang R, Sergon K, Breiman R, Powers AM, 2008. Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa. J Gen Virol 89: 2754–2760.
Pyke AT, Moore PR, McMahon J, 2018. New insights into chikungunya virus emergence and spread from Southeast Asia. Emerg Microbes Infect 7: 26.
Deeba F, Haider MSH, Ahmed A, Tazeen A, Faizan MI, Salam N, Hussain T, Alamery SF, Parveen S, 2020. Global transmission and evolutionary dynamics of the chikungunya virus. Epidemiol Infect 148: e63.
Wimalasiri-Yapa B et al., 2019. Chikungunya virus in Asia-Pacific: A systematic review. Emerg Microbes Infect 8: 70–79.
Dileep M, Priya S, Tathagata B, Jeram P, Karaikurichi VR, 2008. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg Infect Dis J 14: 412.
Staples JE, Breiman RF, Powers AM, 2009. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin Infect Dis 49: 942–948.
Control ECfDPa, 2023. Chikungunya Worldwide Overview. Available at: https://www.ecdc.europa.eu/en/chikungunya-monthly. Accessed August 18, 2023.
Elbers AR, Koenraadt CJ, Meiswinkel R, 2015. Mosquitoes and Culicoides biting midges: Vector range and the influence of climate change. Rev Sci Tech 34: 123–137.
Carrington LB, Simmons CP, 2014. Human to mosquito transmission of dengue viruses. Front Immunol 5: 290.
Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100–103.
Tabachnick WJ, Powell JR, 1979. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res 34: 215–229.
Juliano SA, Lounibos LP, O’Meara GF, 2004. A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: Differences between sites of coexistence and exclusion? Oecologia 139: 583–593.
Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC, 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci USA 108: 7872–7877.
Vega-Rúa A, Marconcini M, Madec Y, Manni M, Carraretto D, Gomulski LM, Gasperi G, Failloux A-B, Malacrida AR, 2020. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun Biol 3: 326.
Thomas S, Rai J, John L, Schaefer S, Pützer BM, Herchenröder O, 2013. Chikungunya virus capsid protein contains nuclear import and export signals. Virol J 10: 269–13.
Jacobs SC, Taylor A, Herrero LJ, Mahalingam S, Fazakerley JK, 2017. Mutation of a conserved nuclear export sequence in chikungunya virus capsid protein disrupts host cell nuclear import. Viruses 9: 306.
Zhang R et al., 2018. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557: 570–574.
Gardner CL, Hritz J, Sun C, Vanlandingham DL, Song TY, Ghedin E, Higgs S, Klimstra WB, Ryman KD, 2014. Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: A model for rational arboviral vaccine design. PLoS Negl Trop Dis 8: e2719.
Gardner CL, Ebel GD, Ryman KD, Klimstra WB, 2011. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci USA 108: 16026–16031.
Silva LA, Khomandiak S, Ashbrook AW, Weller R, Heise MT, Morrison TE, Dermody TS, 2014. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol 88: 2385–2397.
Ashbrook AW, Burrack KS, Silva LA, Montgomery SA, Heise MT, Morrison TE, Dermody TS, 2014. Residue 82 of the chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J Virol 88: 12180–12192.
Wintachai P et al., 2012. Identification of prohibitin as a Chikungunya virus receptor protein. J Med Virol 84: 1757–1770.
Wintachai P, Thuaud F, Basmadjian C, Roytrakul S, Ubol S, Désaubry L, Smith DR, 2015. Assessment of flavaglines as potential chikungunya virus entry inhibitors. Microbiol Immunol 59: 129–141.
Kondratowicz AS et al., 2011. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci USA 108: 8426–8431.
Umetsu SE et al., 2005. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol 6: 447–454.
Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK, 2005. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6: 1245–1252.
Kirui J, Abidine Y, Lenman A, Islam K, Gwon Y-D, Lasswitz L, Evander M, Bally M, Gerold G, 2021. The phosphatidylserine receptor TIM-1 enhances authentic chikungunya virus cell entry. Cells 10: 1828.
Jemielity S et al., 2013. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLOS Pathog 9: e1003232.
Lasswitz L, Zapatero-Belinchón FJ, Moeller R, Hülskötter K, Laurent T, Carlson L-A, Goffinet C, Simmons G, Baumgärtner W, Gerold G, 2022. The tetraspanin CD81 is a host factor for chikungunya virus replication. mBio 13: e00731-22.
Carissimo G, Chan Y-H, Utt A, Chua T-K, Bakar FA, Merits A, Ng LFP, 2019. VCP/p97 is a proviral host factor for replication of chikungunya virus and other alphaviruses. Front Microbiol 10: 2236.
Meertens L et al., 2019. FHL1 is a major host factor for chikungunya virus infection. Nature 574: 259–263.
Lobaina Y, Perera Y, 2019. Implication of B23/NPM1 in viral infections, potential uses of B23/NPM1 inhibitors as antiviral therapy. Infect Disord Drug Targets 19: 2–16.
Pradeep P, Sivakumar KC, Sreekumar E, 2023. Host factor nucleophosmin 1 (NPM1/B23) exerts antiviral effects against chikungunya virus by its interaction with viral nonstructural protein 3. Microbiol Spectr 11: e0537122.
Votteler J, Sundquist WI, 2013. Virus budding and the ESCRT pathway. Cell Host Microbe 14: 232–241.
Henne WM, Buchkovich NJ, Emr SD, 2011. The ESCRT pathway. Dev Cell 21: 77–91.
Torii S et al., 2020. Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. J Biol Chem 295: 7941–7957.
Petitdemange C, Wauquier N, Vieillard V, 2015. Control of immunopathology during chikungunya virus infection. J Allergy Clin Immunol 135: 846–855.
Suzuki Y, 2023. Interferon-induced restriction of chikungunya virus infection. Antiviral Res 210: 105487.
Schilte C, Buckwalter MR, Laird ME, Diamond MS, Schwartz O, Albert ML, 2012. Cutting edge: Independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to chikungunya infection. J Immunol 188: 2967–2971.
Gois BM et al., 2022. Regulatory T cells in acute and chronic human chikungunya infection. Microbes Infect 24: 104927.
Lum FM, Ng LF, 2015. Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral Res 120: 165–174.
Traverse EM, Millsapps EM, Underwood EC, Hopkins HK, Young M, Barr KL, 2022. Chikungunya immunopathology as it presents in different organ systems. Viruses 14: 1786.
Ng LFP, 2017. Immunopathology of chikungunya virus infection: Lessons learned from patients and animal models. Annu Rev Virol 4: 413–427.
Poo YS, Nakaya H, Gardner J, Larcher T, Schroder WA, Le TT, Major LD, Suhrbier A, 2014. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J Virol 88: 6862–6872.
Poh CM, Chan Y-H, Ng LF, 2020. Role of T cells in chikungunya virus infection and utilizing their potential in anti-viral immunity. Front Immunol 11: 287.
Hoarau JJ et al., 2010. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184: 5914–5927.
Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, Leroy EM, 2011. The acute phase of chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204: 115–123.
Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT, 2012. Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines 11: 1087–1101.
Gasque P, Couderc T, Lecuit M, Roques P, Ng LF, 2015. Chikungunya virus pathogenesis and immunity. Vector Borne Zoonotic Dis 15: 241–249.
Sourisseau M et al., 2007. Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89.
Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P, Leroy EM, Vieillard V, 2011. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog 7: e1002268.
Teo T-H, Lum F-M, Claser C, Lulla V, Lulla A, Merits A, Rénia L, Ng LF, 2013. A pathogenic role for CD4+ T cells during chikungunya virus infection in mice. J Immunol 190: 259–269.
Panning M, Grywna K, van Esbroeck M, Emmerich P, Drosten C, 2008. Chikungunya fever in travelers returning to Europe from the Indian Ocean region, 2006. Emerg Infect Dis 14: 416–422.
Kam YW, Simarmata D, Chow A, Her Z, Teng TS, Ong EK, Renia L, Leo YS, Ng LF, 2012. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J Infect Dis 205: 1147–1154.
Couderc T, Khandoudi N, Grandadam M, Visse C, Gangneux N, Bagot S, Prost JF, Lecuit M, 2009. Prophylaxis and therapy for chikungunya virus infection. J Infect Dis 200: 516–523.
Brehin AC, Rubrecht L, Navarro-Sanchez ME, Marechal V, Frenkiel MP, Lapalud P, Laune D, Sall AA, Despres P, 2008. Production and characterization of mouse monoclonal antibodies reactive to Chikungunya envelope E2 glycoprotein. Virology 371: 185–195.
Kam YW et al., 2012. Early neutralizing IgG response to chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med 4: 330–343.
Lee CY et al., 2011. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLoS Pathog 7: e1002390.
Aoyama I, Uno K, Yumisashi T, Takasaki T, Lim CK, Kurane I, Kase T, Takahashi K, 2010. A case of chikungunya fever imported from India to Japan, follow-up of specific IgM and IgG antibodies over a 6-month period. Jpn J Infect Dis 63: 65–66.
Natrajan MS, Rojas A, Waggoner JJ, 2019. Beyond fever and pain: Diagnostic methods for chikungunya virus. J Clin Microbiol 57: e00350-19.
Reid SP, Tritsch SR, Kota K, Chiang CY, Dong L, Kenny T, Brueggemann EE, Ward MD, Cazares LH, Bavari S, 2015. Sphingosine kinase 2 is a chikungunya virus host factor co-localized with the viral replication complex. Emerg Microbes Infect 4: e61.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 990 | 990 | 332 |
Full Text Views | 42 | 42 | 22 |
PDF Downloads | 48 | 48 | 26 |