Malaria, Dengue Fever, and Leptospirosis in the Urabá Antioqueño Region, Colombia: Etiological and Molecular Characterization among Patients with Acute Undifferentiated Febrile Illness

Nicaela Restrepo-López Grupo de Investigación en Ciencias Veterinarias Centauro, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Nicaela Restrepo-López in
Current site
Google Scholar
PubMed
Close
,
Carlos Ramiro Silva-Ramos Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia;

Search for other papers by Carlos Ramiro Silva-Ramos in
Current site
Google Scholar
PubMed
Close
,
Juan David Rodas Grupo de Investigación en Ciencias Veterinarias Centauro, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Juan David Rodas in
Current site
Google Scholar
PubMed
Close
,
Margarita Arboleda Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia;

Search for other papers by Margarita Arboleda in
Current site
Google Scholar
PubMed
Close
,
Diana Fernández Grupo de Investigación en Ciencias Veterinarias Centauro, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Diana Fernández in
Current site
Google Scholar
PubMed
Close
,
Pablo Uribe-Restrepo Grupo de Investigación en Ciencias de la Vida y de la Salud, Escuela de Graduados, Universidad CES, Medellín, Colombia;

Search for other papers by Pablo Uribe-Restrepo in
Current site
Google Scholar
PubMed
Close
,
Piedad Agudelo-Flórez Grupo de Investigación en Ciencias de la Vida y de la Salud, Escuela de Graduados, Universidad CES, Medellín, Colombia;

Search for other papers by Piedad Agudelo-Flórez in
Current site
Google Scholar
PubMed
Close
,
Alberto Tobón-Castaño Grupo de Malaria, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Alberto Tobón-Castaño in
Current site
Google Scholar
PubMed
Close
,
Marylin Hidalgo Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia;

Search for other papers by Marylin Hidalgo in
Current site
Google Scholar
PubMed
Close
,
Peter C. Melby Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas;
Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas;
Department of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Peter C. Melby in
Current site
Google Scholar
PubMed
Close
,
Patricia V. Aguilar Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas;
Department of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Patricia V. Aguilar in
Current site
Google Scholar
PubMed
Close
,
Miguel M. Cabada Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas;
Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas;
Sede Cusco—Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru;

Search for other papers by Miguel M. Cabada in
Current site
Google Scholar
PubMed
Close
,
Francisco J. Díaz Grupo de Inmunovirología, Universidad de Antioquia, Medellín, Colombia

Search for other papers by Francisco J. Díaz in
Current site
Google Scholar
PubMed
Close
, and
Special Recognition of the Members of the Global Infectious Diseases Research Network (GIDRN)
Search for other papers by Special Recognition of the Members of the Global Infectious Diseases Research Network (GIDRN) in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Acute undifferentiated febrile illness (AUFI) is the main cause of medical attention in the tropics worldwide. Malaria, arboviral diseases, and leptospirosis are the most important etiologies. These are highly endemic in the Urabá antioqueño, Colombia, being the main causes of fever in several municipalities in this region. However, up-to-date data regarding the infecting species and serotypes are lacking. Thus, we characterized the etiology of AUFI, focusing on malaria, arboviruses, and leptospirosis in this region and the circulating infecting species. An active surveillance was conducted between January and April 2022, and July and October 2023 in two local hospitals in the Urabá antioqueño. Febrile patients were enrolled voluntarily. Malaria, arboviral diseases, and leptospirosis were screened through direct, serological, molecular, and rapid diagnostic methods. Amplicons obtained for dengue virus (DENV) and Leptospira spp. were analyzed through phylogenetic analysis. A total of 184 febrile patients were enrolled. A confirmed etiology was detected in 43.4% of patients from Apartadó and 61.2% from Turbo. Malaria was the most frequent cause in both municipalities, which was caused mainly by Plasmodium falciparum in Apartadó and Plasmodium vivax in Turbo. Dengue virus serotype 1 genotype V, DENV genotype Asian-American, and DENV genotype Cosmopolitan were identified, as well as pathogenic Leptospira species closely related to Leptospira santarosai and Leptospira noguchii. The present study confirms the importance of malaria, dengue fever, and leptospirosis in the Urabá antioqueño. Plasmodium falciparum and P. vivax were identified, as well as two DENV serotypes and three DENV genotypes and two different Leptospira species.

Author Notes

Financial support: This study was supported as part of the Global Infectious Disease Research Network (GIDRN), with funding from the Center for Tropical Diseases (CTD) and the Division of Infectious Diseases at the University of Texas Medical Branch (UTMB), the Colombia-U.S. Fogarty training program on the impact of emerging zoonotic and vector-borne diseases in acute undifferentiated febrile illnesses (2D43TW010331-06), and by Minciencias, through grant no. 111584467514, project name “Caracterización etiológica del síndrome febril agudo indiferenciado (SFAI) en dos regiones de Colombia.”

Disclosures: The study protocol and the written informed consent and assent were approved by the Bioethics Committee of the Medical School at the Universidad de Antioquia. All recruited adult patients voluntarily signed the written informed consent before any study procedure was performed. For children less than 6 years old and those in critical condition, signed informed consent was obtained from the parents or legal guardians. In the case of children 6–18 years old, an informed assent was voluntarily signed, and the parents or legal guardians provided a signed written informed consent. All signed informed consents were kept locked and available only to the principal investigators. The personal information obtained from each patient was anonymized by assigning a numeric code. The study procedures, management, conservation of biological specimens, and technical-administrative procedures adhered to health research regulations as stated in Resolution 8430 of the Ministry of Health of Colombia from 1993 and to the Declaration of Helsinki for ethical and medical research in human subjects.

Data availability: The data generated and analyzed during the current study are not publicly available, but they can be shared by request to the corresponding author.

Current contact information: Nicaela Restrepo-López, Juan David Rodas, Diana Fernández, Alberto Tobón-Castaño, and Francisco J. Díaz, Universidad de Antioquia, Medellín, Colombia, E-mails: nicaela.restrepo@udea.edu.co, jdavid.rodas@udea.edu.co, diana.fernandez@udea.edu.co, alberto.tobon1@udea.edu.co, and francisco.diaz@udea.edu.co. Carlos Ramiro Silva-Ramos and Marylin Hidalgo, Pontificia Universidad Javeriana, Bogotá, Colombia, E-mails: cramiro-silva@javeriana.edu.co and hidalgo.m@javeriana.edu.co. Margarita Arboleda, Pablo Uribe-Restrepo, and Piedad Agudelo-Flórez, Universidad CES, Medellín, Colombia, E-mails: marboleda@ces.edu.co, uribe.pablo@uces.edu.co, and pagudelo@ces.edu.co. Peter C. Melby, Patricia V. Aguilar, and Miguel M. Cabada, University of Texas Medical Branch, Galveston, Texas, E-mails: pcmelby@utmb.edu, pvaguila@utmb.edu, and micabada@utmb.edu.

Address correspondence to Carlos Ramiro Silva-Ramos, Laboratorio de Bacteriología Especial, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia, E-mail: cramiro-silva@javeriana.edu.co or Juan David Rodas, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia. E-mail: jdavid.rodas@udea.edu.co
  • 1.

    Bottieau E, Yansouni CP, 2018. Fever in the tropics: The ultimate clinical challenge? Clin Microbiol Infect 24: 806807.

  • 2.

    Luvira V, Silachamroon U, Piyaphanee W, Lawpoolsri S, Chierakul W, Leaungwutiwong P, Thawornkuno C, Wattanagoon Y, 2019. Etiologies of acute undifferentiated febrile illness in Bangkok, Thailand. Am J Trop Med Hyg 100: 622629.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bottieau E et al., 2006. Etiology and outcome of fever after a stay in the tropics. Arch Intern Med 166: 16421648.

  • 4.

    Halliday JEB et al., 2020. Zoonotic causes of febrile illness in malaria endemic countries: A systematic review. Lancet Infect Dis 20: e27e37.

  • 5.

    Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C, 2019. Plasmodium genomics: An approach for learning about and ending human malaria. Parasitol Res 118: 127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Makam P, Matsa R, 2021. “Big three” infectious diseases: Tuberculosis, malaria and HIV/AIDS. Curr Top Med Chem 21: 27792799.

  • 7.

    Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, Moonen B, 2012. Malaria resurgence: A systematic review and assessment of its causes. Malar J 11: 122.

  • 8.

    González-Sanz M, Berzosa P, Norman FF, 2023. Updates on malaria epidemiology and prevention strategies. Curr Infect Dis Rep 25: 131139.

  • 9.

    Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, Gueye CS, Fullman N, Gosling RD, Feachem RG, 2013. The changing epidemiology of malaria elimination: New strategies for new challenges. Lancet 382: 900911.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nedjadi T, El-Kafrawy S, Sohrab SS, Desprès P, Damanhouri G, Azhar E, 2015. Tackling dengue fever: Current status and challenges. Virol J 12: 212.

  • 11.

    Postler TS et al., 2023. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol 168: 224.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H, Bello F, 2021. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog Dis 79: ftab043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Zhang J et al., 2021. Co-circulation of three dengue virus serotypes led to a severe dengue outbreak in Xishuangbanna, a border area of China, Myanmar, and Laos, in 2019. Int J Infect Dis 107: 1517.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Belsare AV, Gompper ME, Mason M, Munoz-Zanzi C, 2022. Investigating Leptospira dynamics in a multi-host community using an agent-based modelling approach. Transbound Emerg Dis 69: 37803789.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rajapakse S, 2022. Leptospirosis: Clinical aspects. Clin Med (Lond) 22: 1417.

  • 16.

    Gomard Y, Dellagi K, Goodman SM, Mavingui P, Tortosa P, 2021. Tracking animal reservoirs of pathogenic Leptospira: The right test for the right claim. Trop Med Infect Dis 6: 205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Arboleda M, Pérez MF, Fernández D, Usuga LY, Meza M, 2012. Perfil clínico y de laboratorio de los pacientes con malaria por Plasmodium vivax, hospitalizados en Apartadó, Colombia. Biomedica 32 (Suppl 1): 5867.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Padilla-Rodríguez JC, Olivera MJ, Ahumada-Franco ML, Paredes-Medina AE, 2021. Malaria risk stratification in Colombia 2010 to 2019. PLoS One 16: e0247811.

  • 19.

    Quintero-Vélez JC, Rodas JD, Rojas CA, Ko AI, Wunder EA, 2022. Leptospira infection in rural areas of Urabá Region, Colombia: A prospective study. Am J Trop Med Hyg 107: 12671277.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gutierrez JD, 2021. Effects of meteorological factors on human leptospirosis in Colombia. Int J Biometeorol 65: 257263.

  • 21.

    Tapias-Rivera J, Gutiérrez JD, 2023. Environmental and socio-economic determinants of the occurrence of malaria clusters in Colombia. Acta Trop 241: 106892.

  • 22.

    Arroyave E, Londoño AF, Quintero JC, Agudelo-Flórez P, Arboleda M, Díaz FJ, Rodas JD, 2013. Etiología y caracterización epidemiológica del síndrome febril no palúdico en tres municipios del Urabá antioqueño, Colombia. Biomedica 33 (Suppl 1): 99107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Silva-Ramos CR et al., 2023. Etiological characterization of acute undifferentiated febrile illness in Apartadó and Villeta municipalities, Colombia, during COVID-19 pandemic. Infez Med 31: 517532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA, 1999. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60: 687692.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wu W et al., 2018. Development of multiplex real-time reverse-transcriptase polymerase chain reaction assay for simultaneous detection of Zika, dengue, yellow fever, and chikungunya viruses in a single tube. J Med Virol 90: 16811686.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rojas A et al., 2020. Real-time RT-PCR for the detection and quantitation of Oropouche virus. Diagn Microbiol Infect Dis 96: 114894.

  • 27.

    Harris E, Roberts TG, Smith L, Selle J, Kramer LD, Valle S, Sandoval E, Balmaseda A, 1998. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J Clin Microbiol 36: 26342639.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Díaz FJ, Black WC, Farfán-Ale JA, Loroño-Pino MA, Olson KE, Beaty BJ, 2006. Dengue virus circulation and evolution in Mexico: A phylogenetic perspective. Arch Med Res 37: 760773.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bessa TA, Spichler A, Chapola EG, Husch AC, de Almeida MF, Sodré MM, Savani ES, Sacramento DR, Vinetz JM, 2010. The contribution of bats to leptospirosis transmission in Sao Paulo City, Brazil. Am J Trop Med Hyg 82: 315317.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tamura K, Nei M, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512526.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tamura K, Stecher G, Kumar S, 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 30223027.

  • 34.

    Ronquist F, Huelsenbeck JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.

  • 35.

    Alarcón ÉP, Segura ÁM, Rúa-Uribe G, Parra-Henao G, 2014. Evaluación de ovitrampas para vigilancia y control de Aedes aegypti en dos centros urbanos del Urabá antioqueño. Biomedica 34: 409424.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Altamiranda-Saavedra M, Porcasi X, Scavuzzo CM, Correa MM, 2018. Downscaling incidence risk mapping for a Colombian malaria endemic region. Trop Med Int Health 23: 11011109.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Naranjo-Diaz N, Rosero DA, Rua-Uribe G, Luckhart S, Correa MM, 2013. Abundance, behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. Parasit Vectors 6: 61.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Carmona-Fonseca J, 2017. La Región “Urabá Antioqueño-Cuencas altas de los ríos Sinú y San Jorge-Bajo Cauca Antioqueño”: “guarida” del paludismo colombiano. Revsal 49: 577589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Snow RW, 2015. Global malaria eradication and the importance of Plasmodium falciparum epidemiology in Africa. BMC Med 13: 23.

  • 40.

    White NJ, 2022. Severe malaria. Malar J 21: 284.

  • 41.

    Bhatt S et al., 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526: 207211.

  • 42.

    Naing C, Whittaker MA, Nyunt Wai V, Mak JW, 2014. Is Plasmodium vivax malaria a severe malaria?: A systematic review and meta-analysis. PLoS Negl Trop Dis 8: e3071.

  • 43.

    Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K, 2020. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol 36: 560570.

  • 44.

    Usme-Ciro JA, Méndez JA, Laiton KD, Páez A, 2014. The relevance of dengue virus genotypes surveillance at country level before vaccine approval. Hum Vaccin Immunother 10: 26742678.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ma M, Wu S, He Z, Yuan L, Bai Z, Jiang L, Marshall J, Lu J, Yang Z, Jing Q, 2021. New genotype invasion of dengue virus serotype 1 drove massive outbreak in Guangzhou, China. Parasit Vectors 14: 126.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Villabona-Arenas CJ, Zanotto PM, 2013. Worldwide spread of dengue virus type 1. PLoS One 8: e62649.

  • 47.

    Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, Gallego-Gomez JC, 2010. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J 7: 226.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ocazionez-Jiménez RE, Ortiz-Báez AS, Gómez-Rangel SY, Miranda-Esquivel DR, 2012. Virus del dengue de serotipo 1 (DENV-1) de Colombia: Su contribución a la presentación del dengue en el departamento de Santander. Biomedica 33: 2230.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Mir D, Romero H, Fagundes de Carvalho LM, Bello G, 2014. Spatiotemporal dynamics of DENV-2 Asian-American genotype lineages in the Americas. PLoS One 9: e98519.

  • 50.

    Rico-Hesse R, 1990. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174: 479493.

  • 51.

    Hadinegoro SR, 2012. The revised WHO dengue case classification: Does the system need to be modified? Paediatr Int Child Health 32 (Suppl 1): 3338.

  • 52.

    Méndez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sánchez JA, Tenorio A, Gallego-Gomez JC, 2012. Phylogenetic reconstruction of dengue virus type 2 in Colombia. Virol J 9: 64.

  • 53.

    Laiton-Donato K, Alvarez DA, Peláez-Carvajal D, Mercado M, Ajami NJ, Bosch I, Usme-Ciro JA, 2019. Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virol J 16: 62.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Yenamandra SP, Koo C, Chiang S, Lim HSJ, Yeo ZY, Ng LC, Hapuarachchi HC, 2021. Evolution, heterogeneity and global dispersal of cosmopolitan genotype of dengue virus type 2. Sci Rep 11: 13496.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    García MP, Padilla C, Figueroa D, Manrique C, Cabezas C, 2022. Emergence of the Cosmopolitan genotype of dengue virus serotype 2 (DENV2) in Madre de Dios, Peru, 2019. Rev Peru Med Exp Salud Publica 39: 126128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Amorim MT et al., 2023. Emergence of a new strain of DENV-2 in South America: Introduction of the Cosmopolitan genotype through the Brazilian-Peruvian border. Trop Med Infect Dis 8: 325.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Giovanetti M et al., 2022. Emergence of dengue virus serotype 2 Cosmopolitan genotype, Brazil. Emerg Infect Dis 28: 17251727.

  • 58.

    Nwe KM et al., 2023. Clinical, virological, and immunological features in Cosmopolitan genotype DENV-2-infected patients during a large dengue outbreak in Sri Lanka in 2017. Am J Trop Med Hyg 109: 917925.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Onoja BA, Maiga M, Adesola RO, Adamu AM, Adegboye OA, 2023. Changing ecotypes of dengue virus 2 serotype in Nigeria and the emergence of Cosmopolitan and Asian I lineages, 1966–2019. Vaccines (Basel) 11: 547.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Phadungsombat J, Lin MY, Srimark N, Yamanaka A, Nakayama EE, Moolasart V, Suttha P, Shioda T, Uttayamakul S, 2018. Emergence of genotype Cosmopolitan of dengue virus type 2 and genotype III of dengue virus type 3 in Thailand. PLoS One 13: e0207220.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Ciuoderis KA, Usuga J, Moreno I, Perez-Restrepo LS, Flórez DY, Cardona A, Cloherty GA, Berg MG, Hernandez-Ortiz JP, Osorio JE, 2023. Characterization of dengue virus serotype 2 Cosmopolitan genotype circulating in Colombia. Am J Trop Med Hyg 109: 12981302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Martínez D, Gómez M, Hernández C, Muñoz M, Campo-Palacio S, González-Robayo M, Montilla M, Pavas-Escobar N, Ramírez JD, 2024. Emergence of dengue virus serotype 2 Cosmopolitan genotype, Colombia. Emerg Infect Dis 30: 189192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Mwachui MA, Crump L, Hartskeerl R, Zinsstag J, Hattendorf J, 2015. Environmental and behavioural determinants of leptospirosis transmission: A systematic review. PLoS Negl Trop Dis 9: e0003843.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Pérez-García J, Arboleda M, Agudelo-Flórez P, 2016. Leptospirosis infantil en pacientes con síndrome febril en la Región de Urabá, Colombia. Rev Peru Med Exp Salud Publica 33: 745750.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Monroy FP, Solari S, Lopez , Agudelo-Flórez P, Peláez Sánchez RG, 2021. High diversity of Leptospira species infecting bats captured in the Urabá region (Antioquia-Colombia). Microorganisms 9: 1897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Perez-Garcia J, Monroy FP, Agudelo-Florez P, 2022. Canine leptospirosis in a northwestern region of Colombia: Serological, molecular and epidemiological factors. Pathogens 11: 1040.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Peláez Sanchez RG, Lopez , Pereira MM, Arboleda Naranjo M, Agudelo-Flórez P, 2016. Genetic diversity of Leptospira in northwestern Colombia: First report of Leptospira santarosai as a recognised leptospirosis agent. Mem Inst Oswaldo Cruz 111: 737744.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Chinchilla D, Nieves C, Gutiérrez R, Sordoillet V, Veyrier FJ, Picardeau M, 2023. Phylogenomics of Leptospira santarosai, a prevalent pathogenic species in the Americas. PLoS Negl Trop Dis 17: e0011733.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Loureiro AP, Jaeger LH, Di Azevedo MIN, Miraglia F, Moreno LZ, Moreno AM, Pestana CP, Carvalho-Costa FA, Medeiros MA, Lilenbaum W, 2020. Molecular epidemiology of Leptospira noguchii reveals important insights into a One Health context. Transbound Emerg Dis 67: 276283.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Silva EF et al., 2009. Leptospira noguchii and human and animal leptospirosis, Southern Brazil. Emerg Infect Dis 15: 621623. doi: 10.3201/eid1504.071669.

  • 71.

    Morey RE, Galloway RL, Bragg SL, Steigerwalt AG, Mayer LW, Levett PN, 2006. Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. J Clin Microbiol 44: 35103516.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Arboleda M, Mejía-Torres M, Posada M, Restrepo N, Ríos-Tapias P, Rivera-Pedroza LA, Calle D, Sánchez-Jiménez MM, Marín K, Agudelo-Flórez P, 2023. Molecular diagnosis as an alternative for public health surveillance of leptospirosis in Colombia. Microorganisms 11: 2759.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Pérez-García J, Agudelo-Flórez P, Parra-Henao GJ, Ochoa JE, Arboleda M, 2019. Incidencia y subregistro de casos de leptospirosis diagnosticados con tres métodos diferentes en Urabá, Colombia. Biomedica 39: 150162.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 3765 3765 1588
Full Text Views 90 90 6
PDF Downloads 113 113 8
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save