Influence of Household Roof Types on the Development of Plasmodium vivax in Anopheles stephensi Mosquitoes

Sangamithra Ravishankaran ICMR–National Institute of Malaria Research, Field Unit, Chennai, India;
Madras Christian College, Chennai, India;

Search for other papers by Sangamithra Ravishankaran in
Current site
Google Scholar
PubMed
Close
,
Aswin Asokan ICMR–National Institute of Malaria Research, Field Unit, Chennai, India;
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India;

Search for other papers by Aswin Asokan in
Current site
Google Scholar
PubMed
Close
,
N. A. Johnson Amala Justin ICMR–National Institute of Malaria Research, Field Unit, Chennai, India;

Search for other papers by N. A. Johnson Amala Justin in
Current site
Google Scholar
PubMed
Close
,
Janani Surya R ICMR–National Institute of Epidemiology, Chennai, India

Search for other papers by Janani Surya R in
Current site
Google Scholar
PubMed
Close
,
Manu Thomas Mathai Madras Christian College, Chennai, India;

Search for other papers by Manu Thomas Mathai in
Current site
Google Scholar
PubMed
Close
, and
Alex Eapen ICMR–National Institute of Malaria Research, Field Unit, Chennai, India;
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India;

Search for other papers by Alex Eapen in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Urbanization and microclimate variation in cities can influence mosquito behavior and parasite development, thus affecting malaria transmission. This study investigates how the impact of microclimate variations due to household roof types can aid in the survival of Anopheles stephensi and the development of Plasmodium vivax in an urban slum setting. Understanding these vital environmental interactions is essential for devising effective control strategies to achieve malaria elimination. Anopheles stephensi (F1) mosquitoes were membrane-fed with blood collected from P. vivax-infected patients before (day 0) and during (day 1) antimalarial treatment. The parasite development and mosquito survival were monitored in simulated microclimatic conditions of a variety of household roof types (thatched, asbestos, tiled) against standard laboratory conditions. Mosquito dissections were undertaken to detect oocysts and sporozoites in An. stephensi mosquitoes (oocyst: day 3–5, sporozoites: day 7–11). The maximum number of oocysts were detected in infected mosquitoes in thatched-roof conditions, whereas the largest oocyst was in the asbestos roof type. Circumsporozoite-ELISA results indicated the presence of sporozoites in infected mosquitoes for up to 29 days under standard conditions, 18 days in thatched-roof and asbestos roof conditions, and 14 days in tiled conditions. The univariate binary logistic regression model indicated a significant influence of microclimatic conditions of thatched roofs on parasite development. The Kaplan-Meier survival analysis revealed that the median survival of P. vivax-infected An. stephensi in thatched-roof conditions was 14 days, followed by asbestos (11 days) and tiled (10 days) roof conditions. In conclusion, thatched-roof houses were favorable for the development and survival of P. vivax-infected An. stephensi.

    • Supplemental Materials (PDF 348.34 KB)

Author Notes

Financial support: This work was supported by the National Institute of Allergy and Infectious Diseases, under NIH grant U19AI089676, an International Center of Excellence for Malaria Research.

Disclosures: Institutional ethical clearance of the project was obtained from the National Institute of Malaria Research of the Indian Council of Medical Research, New Delhi (ECR/NIMR/EC/2010/100). Informed consent was obtained from all subjects. All experiments were performed in accordance with the relevant guidelines and regulations.

The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Current contact information: Sangamithra Ravishankaran, ICMR-National Institute of Malaria Research, Field Unit, Chennai, India, and Madras Christian College, Chennai, India, E-mail: vr.sangamithra@gmail.com. Aswin Asokan and Alex Eapen, ICMR-National Institute of Malaria Research, Field Unit, Chennai, India, and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India, E-mails: ashwinviro@gmail.com and alexeapen@yahoo.com. N. A. Johnson Amala Justin, ICMR-National Institute of Malaria Research, Field Unit, Chennai, India, and National Center for Vector Borne Diseases Control, New Delhi, India, E-mail: johnsonamalajustin@gmail.com. Janani Surya R, ICMR-National Institute of Epidemiology, Chennai, India, E-mail: jananisurya92@gmail.com. Manu Thomas Mathai, Madras Christian College, Chennai, India, E-mail: manuthomasmcc@gmail.com.

Address correspondence to Alex Eapen, ICMR–National Institute of Malaria Research, NIE Campus, 2nd Main Rd., TNHB, Ayapakkam, Chennai 600 077, Tamil Nadu, India. E-mail: alexeapen@yahoo.com
  • 1.

    World Health Organization, 2023. World Malaria Report 2023. Geneva, Switzerland: World Health Organization.

  • 2.

    Ministry of Health and Family Welfare, Government of India, National Center for Vector Borne Diseases Control. Available at: https://ncvbdc.mohfw.gov.in/index.php. Accessed January 10, 2024.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rahi M, Das P, Sharma A, 2020. COVID-19 mitigation steps provide a blueprint for malaria control and elimination. Am J Trop Med Hyg 103: 2830.

  • 4.

    Wilder-Smith A, Tissera H, Ooi EE, Coloma J, Scott TW, Gubler DJ, 2020. Preventing dengue epidemics during the COVID-19 pandemic. Am J Trop Med Hyg 103: 570571.

  • 5.

    Hussein MIH, Albashir AAD, Elawad OAMA, Homeida A, 2020. Malaria and COVID-19: Unmasking their ties. Malar J 19: 457.

  • 6.

    Parham PE et al., 2015. Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission. Philos Trans R Soc Lond B Biol Sci 370: 20130551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Murdock CC, Sternberg ED, Thomas MB, 2016. Malaria transmission potential could be reduced with current and future climate change. Sci Rep 6: 2777127777.

  • 8.

    Bordoloi B, Saharia S, 2021. Mosquito-borne diseases in Assam. Int J Mosq Res 8: 130133.

  • 9.

    Ghosh SK, Rahi M, 2019. Malaria elimination in India—The way forward. J Vector Borne Dis 56: 3240.

  • 10.

    Ahmad SS, Rahi M, Sharma A, 2021. Relapses of Plasmodium vivax malaria threaten disease elimination: Time to deploy tafenoquine in India? BMJ Glob Health 6: e004558.

  • 11.

    Wilson ML, Krogstad DJ, Arinaitwe E, Arevalo-Herrera M, Chery L, Ferreira MU, Ndiaye D, Mathanga DP, Eapen A, 2015. Urban malaria: Understanding its epidemiology, ecology, and transmission across seven diverse ICEMR network sites. Am J Trop Med Hyg 93: 110123.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Thomas S, Ravishankaran S, Justin JA, Asokan A, Mathai MT, Valecha N, Thomas MB, Eapen A, 2016. Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission setting of Chennai, India. Malar J 15: 274.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thomas S, Ravishankaran S, Asokan A, Johnson Amala Justin NA, Maria Jusler Kalsingh TMJ, Mathai MT, Valecha N, Eapen A, 2018. Socio-demographic and household attributes may not necessarily influence malaria: Evidence from a cross-sectional study of households in an urban slum setting of Chennai, India. Malar J 17: 4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Alemu A, Tsegaye W, Golassa L, Abebe G, 2011. Urban malaria and associated risk factors in Jimma town, south-west Ethiopia. Malar J 10: 173.

  • 15.

    Thomas S, Ravishankaran S, Justin NJA, Asokan A, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A, 2017. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar J 16: 111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cator LJ, Thomas S, Paaijmans KP, Ravishankaran S, Justin JA, Mathai MT, Read AF, Thomas MB, Eapen A, 2013. Characterizing microclimate in urban malaria transmission settings: A case study from Chennai, India. Malar J 12: 84.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thomas S, Ravishankaran S, Justin NJA, Asokan A, Kalsingh TMJ, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A, 2018. Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: A study from a malaria-endemic urban setting, Chennai in India. Malar J 17: 201.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ciota AT, Matacchiero AC, Kilpatrick AM, Kramer LD, 2014. The effect of temperature on life history traits of Culex mosquitoes. J Med Entomol 51: 5562.

  • 19.

    Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G, 2007. Life-table analysis of Anopheles arabiensis in western Kenya highlands: Effects of land covers on larval and adult survivorship. Am J Trop Med Hyg 77: 660666.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Raghavendra K, Barik TK, Swain V, 2010. Studies on the impact of thermal stress on survival and development of adaptive thermotolerance in immature stages of Anopheles culicifacies. J Ecobiotechnol 2: 2530.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ravishankaran S, Asokan A, Justin NA, Thomas S, Joshua V, Mathai MT, Eapen A, 2022. Does the roof type of a house influence the presence of adult Anopheles stephensi, urban malaria vector?—Evidence from a few slum settings in Chennai, India. Parasitol Res 121: 105114.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kumari S, De TD, Chauhan CRJ, Tevatiya S, Sharma P, Pandey KC, Pande V, Dixit R, 2020. Salivary AsHPX12 influence pre-blood meal associated behavioral properties in the mosquito Anopheles stephensi. bioRxiv doi.org/10.1101/2020.06.12.147959.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kumari S et al., 2021. Genetic changes of Plasmodium vivax tempers host tissue-specific responses in Anopheles stephensi. Curr Res Immunol 2: 1222.

  • 24.

    Sharma P, Rani J, Chauhan C, Kumari S, Tevatiya S, Das De T, Savargaonkar D, Pandey KC, Dixit R, 2020. Altered gut microbiota and immunity defines Plasmodium vivax survival in Anopheles stephensi. Front Immunol 11: 609.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Basseri HR, Doosti S, Akbarzadeh K, Nateghpour M, Whitten M, Ladoni H, 2008. Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle. Malar J 7: 131138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Adak T, Singh OP, Das MK, Wattal S, Nanda N, 2005. Comparative susceptibility of three important malaria vectors Anopheles stephensi, Anopheles fluviatilis, and Anopheles sundaicus to Plasmodium vivax. J Parasitol 91: 7982.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    World Health Organization, 2015. Guidelines for the Treatment of Malaria. Geneva, Switzerland: WHO.

  • 28.

    Baird JK, Valecha N, Duparc S, White NJ, Price RN, 2016. Diagnosis and treatment of Plasmodium vivax malaria. Am J Trop Med Hyg 95: 3551.

  • 29.

    Price RN, Von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ, 2014. Global extent of chloroquine-resistant Plasmodium vivax: A systematic review and meta-analysis. Lancet Infect Dis 14: 982991.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Shumbej T, Jemal A, Worku A, Bekele F, Weldesenbet H, 2019. Therapeutic efficacy of chloroquine for treatment of Plasmodium vivax malaria cases in Guragae zone southern Central Ethiopia. BMC Infect Dis 19: 413416.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Xu S et al., 2020. Efficacy of directly-observed chloroquine-primaquine treatment for uncomplicated acute Plasmodium vivax malaria in northeast Myanmar: A prospective open-label efficacy trial. Travel Med Infect Dis 36: 101499.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kshirsagar NA et al., 2000. A randomized, double-blind, parallel-group, comparative safety, and efficacy trial of oral co-artemether versus oral chloroquine in the treatment of acute uncomplicated Plasmodium falciparum malaria in adults in India. Am J Trop Med Hyg 62: 402408.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    van Eijk AM et al., 2016. What is the value of reactive case detection in malaria control? A case-study in India and a systematic review. Malar J 15: 67.

  • 34.

    van Eijk AM et al., 2019. The burden of submicroscopic and asymptomatic malaria in India revealed from epidemiology studies at three varied transmission sites in India. Sci Rep 9: 17095.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Nagpal BN, Sharma VP, 1995. Indian Anophelines. Lebanon, NH: Science Publishers, Inc.

  • 36.

    Nagpal BN, Srivastava A, Saxena R, Ansari MA, Dash AP, Das SC, 2005. Pictorial Identification Key for Indian Anophelines. Delhi: Malaria Research Center, 8–10.

    • PubMed
    • Export Citation
  • 37.

    World Health Organization, 1975. Manual on Practical Entomology in Malaria. Part II. Methods and Techniques. Geneva, Switzerland: Division of Malaria and Other Parasitic Diseases, WHO.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ljungstrom I, Moll K, Perlmann H, Scherf A, Wahlgren M, 2008. Methods in Malaria Research. Manassas, VA: MR4/ATCC.

  • 39.

    Morgan JC, Irving H, Okedi LM, Steven A, Wondji CS, 2010. Pyrethroid resistance in an Anopheles funestus population from Uganda. PloS One 5: e11872.

  • 40.

    MR4, The Malaria Research and Reference Reagent Resource Center 2014. Methods in Anopheles Research. Available at: https://www.beiresources.org/portals/2/MR4/MR4_Publications/Methods%20in%20Anopheles%20Research%202014/2014MethodsinAnophelesResearchManualFullVersionv2tso.pdf. Accessed November 8, 2024.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    National Institute of Malaria Research, New Delhi, India 2014. Guidelines for Diagnosis and Treatment of Malaria in India.

  • 42.

    Rubio JM, Benito A, Roche J, Berzosa PJ, Garcia ML, Mico M, Edu M, Alvar J, 1999. Semi-nested, multiplex polymerase chain reaction for detection of human malaria parasites and evidence of Plasmodium vivax infection in Equatorial Guinea. Am J Trop Med Hyg 60: 183187.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Looker M, Taylor-Robinson AW, 2004. Methods in Malaria Research. 4th edn. Manassas, VA: MR4/ATCC.

    • PubMed
    • Export Citation
  • 44.

    Wirtz R, Avery M, Benedict M, Sutcliffe A, 2007. Plasmodium sporozoite ELISA. Methods in Anopheles Research. Manassas, VA: Malaria Research and Reference Reagent Resource Center (MR4), 18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Reegan AD, Kumar CS, Justin JA, Udhayakumar PN, Balavinayagam S, Tamilmaran P, Natesan A, Gopinath S, Joe N, Arthur R, 2022. Malaria elimination in two endemic coastal environments of Southern India: An eco-epidemiological analysis from 2004 to 2019. Acta Parasitol 67: 428436.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, Whitehead SA, Thomas MB, 2018. Rethinking the extrinsic incubation period of malaria parasites. Parasit Vectors 11: 178179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB, 2010. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA 107: 1513515139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Duncan D, Eades J, Julian SR, Micks D, 1960. Electron microscope observations on malarial oocysts (Plasmodium cathemerium). J Protozool 7: 1826.

  • 49.

    Gamage-Mendis AC, Rajakaruna J, Weerasinghe S, Mendis C, Carter R, Mendis KN, 1993. Infectivity of Plasmodium vivax and P. falciparum to Anopheles tessellatus; relationship between oocyst and sporozoite development. Trans R Soc Trop Med Hyg 87: 36.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Childs LM, Prosper OF, 2020. The impact of within-vector parasite development on the extrinsic incubation period. R Soc Open Sci 7: 192173.

  • 51.

    Guissou E, Da DF, Hien DF, Yameogo KB, Yerbanga SR, Ouédraogo GA, Dabiré KR, Lefèvre T, Cohuet A, 2023. Intervention reducing malaria parasite load in vector mosquitoes: No impact on Plasmodium falciparum extrinsic incubation period and the survival of Anopheles gambiae. PLoS Pathog 19: e1011084.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    World Health Organization, 2015. Control and Elimination of Plasmodium vivax Malaria: A Technical Brief. Geneva, Switzerland: WHO.

  • 53.

    Cox FEG, 2010. History of the discovery of the malaria parasites and their vectors. Parasit Vectors 3: 5.

  • 54.

    World Health Organization Regional Office for South-East Asia 2013. Frequently Asked Questions on Malaria. New Delhi, India: WHO Regional Office for South-East Asia. Available at: https://iris.who.int/bitstream/handle/10665/205088/B5046.pdf?sequence=1&isAllowed=y. Accessed November 11, 2024.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Wangdi K, Furuya-Kanamori L, Clark J, Barendregt JJ, Gatton ML, Banwell C, Kelly GC, Doi SA, Clements ACA, 2018. Comparative effectiveness of malaria prevention measures: A systematic review and network meta-analysis. Parasit Vectors 11: 210.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Subbarao SK, Nanda N, Rahi M, Raghavendra K, 2019. Biology and bionomics of malaria vectors in India: Existing information and what more needs to be known for strategizing elimination of malaria. Malar J 18: 396.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 2074 2074 892
Full Text Views 61 61 0
PDF Downloads 75 75 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save