Dengue Virus Infection: Immune Response and Therapeutic Targets

Ngo Tin Ern Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia

Search for other papers by Ngo Tin Ern in
Current site
Google Scholar
PubMed
Close
,
Thamil Vaani Komarasamy Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia

Search for other papers by Thamil Vaani Komarasamy in
Current site
Google Scholar
PubMed
Close
,
Nur Amelia Azreen Adnan Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia

Search for other papers by Nur Amelia Azreen Adnan in
Current site
Google Scholar
PubMed
Close
, and
Vinod R. M. T. Balasubramaniam Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia

Search for other papers by Vinod R. M. T. Balasubramaniam in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Flavivirus infection, especially dengue virus infection caused by DENV, is known to be a significant health concern globally owing to the high incidence and mortality rate. The expanding and increasing disease burden calls for the need to develop an effective treatment and prevent the event of fatal complications, including dengue hemorrhagic fever/dengue shock syndrome. The DENV-induced immune response has been described as paradoxical because it has a protective role in viral clearance but, at the same time, causes more severe infection through viral-specific immunity. This is further complicated by high homology and cross-reactivity between different serotypes of DENV, causing a more severe disease presentation during secondary infection by a heterologous serotype. This serotype complexity poses a challenge for the development of a universal flavivirus vaccine. This review highlights the significance of high motility group box 1 (HMGB1) and nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome activation pathways in initiating an inflammatory response through the downstream activation of nuclear factor κB and proinflammatory cytokine Interleukin (IL)-1B, IL-18 release in DENV infection. It also discusses the role of NLRP3 in activating cellular apoptosis and pyroptosis leading to systemic failure, especially in peripheral tissues. Over the decades, there has been much progress in understanding the immunopathogenesis of DENV infection. Researchers have been studying key pathogenic molecules for potential therapeutic targets including HMGB1 and NLRP3 inflammasome inhibitors, which is explored in this review. Ultimately, although there is not yet an effective antiviral or vaccine for DENV, immunomodulators continue to pave the way to decrease disease severity in infected individuals.

    • Supplemental Materials (PDF 90.545 KB)

Author Notes

Current contact information: Ngo Tin Ern, Thamil Vaani Komarasamy, Nur Amelia Azreen Adnan, and Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, E-mails: tngo0006@student.monash.edu, thamil.komarasamy@monash.edu, amelia.azreen@monash.edu, and vinod.balasubramaniam@monash.edu

Address correspondence to Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia. E-mail: vinod.balasubramaniam@monash.edu
  • 1.

    Pierson TC, Diamond MS, 2020. The continued threat of emerging flaviviruses. Nat Microbiol 5: 796812.

  • 2.

    Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J, 2021. Flavivirus: From structure to therapeutics development. Life (Basel) 11: 615.

  • 3.

    Chen HR, Lai YC, Yeh TM, 2018. Dengue virus non-structural protein 1: A pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 25: 58.

  • 4.

    Scherwitzl I, Mongkolsapaja J, Screaton G, 2017. Recent advances in human flavivirus vaccines. Curr Opin Virol 23: 95101.

  • 5.

    Silva NM, Santos NC, Martins IC, 2020. Dengue and Zika viruses: Epidemiological history, potential therapies, and promising vaccines. Trop Med Infect Dis 5: 150.

  • 6.

    Shrivastava G, Valenzuela Leon PC, Calvo E, 2020. Inflammasome fuels dengue severity. Front Cell Infect Microbiol 10: 489.

  • 7.

    St John AL, Rathore APS, 2019. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol 19: 218230.

  • 8.

    Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK, 2020. Challenges in dengue vaccines development: Pre-existing infections and cross-reactivity. Front Immunol 11: 1055.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kao YT, Lai MMC, Yu CY, 2018. How dengue virus circumvents innate immunity. Front Immunol 9: 2860.

  • 10.

    Costa VV, Fagundes CT, Souza DG, Teixeira MM, 2013. Inflammatory and innate immune responses in dengue infection: Protection versus disease induction. Am J Pathol 182: 19501961.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Srikiatkhachorn A, Mathew A, Rothman AL, 2017. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol 39: 563574.

  • 12.

    Oliveira ERA, et al., 2017. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep 7: 16011.

  • 13.

    Andersson U, Ottestad W, Tracey KJ, 2020. Extracellular HMGB1: A therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med 26: 42.

  • 14.

    Yang H, et al., 2015. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med 212: 514.

  • 14.

    Yang H, Wang H, Andersson U, 2020. Targeting inflammation driven by HMGB1. Front Immunol 11: 484.

  • 16.

    Zhao C, Zhao W, 2020. NLRP3 inflammasome-A key player in antiviral responses. Front Immunol 11: 211.

  • 17.

    Pan P, et al., 2019. Dengue virus M protein promotes NLRP3 inflammasome activation to induce vascular leakage in mice. J Virol 93: e00996-19.

  • 18.

    Screaton G, Mongkolsapaya J, Yacoub S, Roberts C, 2015. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15: 745759.

  • 19.

    Slon Campos JL, Mongkolsapaya J, Screaton GR, 2018. The immune response against flaviviruses. Nat Immunol 19: 11891198.

  • 20.

    Tian Y, Grifoni A, Sette A, Weiskopf D, 2019. Human T cell response to dengue virus infection. Front Immunol 10: 2125.

  • 21.

    Mathew A, West K, Kalayanarooj S, Gibbons RV, Srikiatkhachorn A, Green S, Libraty D, Jaiswal S, Rothman AL, 2011. B-cell responses during primary and secondary dengue virus infections in humans. J Infect Dis 204: 15141522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bos S, et al., 2024. Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype. Nat Commun 15: 382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jayathilaka D, et al., 2018. Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat Commun 9: 5242.

  • 24.

    Dayarathna S, et al., 2020. Similarities and differences between the ‘cytokine storms’ in acute dengue and COVID-19. Sci Rep 10: 19839.

  • 25.

    Imrie A, Meeks J, Gurary A, Sukhbaatar M, Truong TT, Cropp CB, Effler P, 2007. Antibody to dengue 1 detected more than 60 years after infection. Viral Immunol 20: 672675.

  • 26.

    Narayan R, Tripathi S, 2020. Intrinsic ADE: The dark side of antibody dependent enhancement during dengue infection. Front Cell Infect Microbiol 10: 580096.

  • 27.

    Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N, 2020. Antibody-dependent enhancement: A challenge for developing a safe dengue vaccine. Front Cell Infect Microbiol 10: 572681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ramasamy V, et al., 2018. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl Trop Dis 12: e0006191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ, 2016. The 3.8 A resolution cryo-EM structure of Zika virus. Science 352: 467470.

  • 30.

    Montecillo-Aguado MR, et al., 2019. Cross-reaction, enhancement, and neutralization activity of dengue virus antibodies against Zika virus: A study in the Mexican population. J Immunol Res 2019: 7239347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nogueira ML, et al., 2018. Adverse birth outcomes associated with Zika virus exposure during pregnancy in Sao Jose do Rio Preto, Brazil. Clin Microbiol Infect 24: 646652.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris E, 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358: 929932.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Vo HTM, et al., 2022. Temporal patterns of functional anti-dengue antibodies in dengue infected individuals with different disease outcome or infection history. Sci Rep 12: 17863.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lien TS, Sun DS, Wu CY, Chang HH, 2021. Exposure to dengue envelope protein Domain III induces Nlrp3 inflammasome-dependent endothelial dysfunction and hemorrhage in mice. Front Immunol 12: 617251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Low JG, Ooi EE, Vasudevan SG, 2017. Current status of dengue therapeutics research and development. J Infect Dis 215: S96S102.

  • 36.

    Low JG, Gatsinga R, Vasudevan SG, Sampath A, 2018. Dengue antiviral development: A continuing journey. Adv Exp Med Biol 1062: 319332.

  • 37.

    Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD, 2020. Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLoS One 15: e0237141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Best SM, 2017. The many faces of the Flavivirus NS5 protein in antagonism of type I interferon signaling. J Virol 91: e01970-16.

  • 39.

    Thurmond S, Wang B, Song J, Hai R, 2018. Suppression of type I interferon signaling by Flavivirus NS5. Viruses 10: 712.

  • 40.

    Ashour J, et al., 2010. Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8: 410421.

  • 41.

    Fernandes PO, Chagas MA, Rocha WR, Moraes AH, 2021. Non-structural protein 5 (NS5) as a target for antiviral development against established and emergent flaviviruses. Curr Opin Virol 50: 3039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Troost B, Smit JM, 2020. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 43: 921.

  • 43.

    Kaptein SJF, et al., 2021. A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction. Nature 598: 504509.

  • 44.

    Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME, 2016. HMGB1 as biomarker and drug target. Pharmacol Res 111: 534544.

  • 45.

    Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai L, Yin L, Dong H, 2014. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS One 9: e89450.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ogiku M, Kono H, Hara M, Tsuchiya M, Fujii H, 2011. Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats. J Pharmacol Exp Ther 339: 9398.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E, 2018. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17: 588606.

  • 48.

    Zahid A, Li B, Kombe AJK, Jin T, Tao J, 2019. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol 10: 2538.

  • 49.

    Zhang X, Xu A, Lv J, Zhang Q, Ran Y, Wei C, Wu J, 2020. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem 185: 111822.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Coll RC, et al., 2015. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21: 248255.

  • 51.

    Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, Mulder LC, Fernandez-Sesma A, Garcia-Sastre A, 2013. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 9: e1003265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Fink J, et al., 2007. Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1: e86.

  • 53.

    Krishnan MN, Garcia-Blanco MA, 2014. Targeting host factors to treat West Nile and dengue viral infections. Viruses 6: 683708.

  • 54.

    Lahon A, Arya RP, Banerjea AC, 2021. Dengue virus dysregulates master transcription factors and PI3K/AKT/mTOR signaling pathway in megakaryocytes. Front Cell Infect Microbiol 11: 715208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kao J-C, HuangFu W-C, Tsai T-T, Ho M-R, Jhan M-K, Shen T-J, Tseng P-C, Wang Y-T, Lin C-F, 2018. The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLoS Negl Trop Dis 12: e0006715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Tsai TT, Chuang YJ, Lin YS, Wan SW, Chen CL, Lin CF, 2013. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci 20: 40.

  • 57.

    Wang X, Wong K, Ouyang W, Rutz S, 2019. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol 11: a028548.

  • 58.

    Komarasamy TV, Adnan NAA, James W, Balasubramaniam VR, 2022. Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Negl Trop Dis 16: e0010291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Good SS, Shannon A, Lin K, Moussa A, Julander JG, La Colla P, Collu G, Canard B, Sommadossi JP, 2021. Evaluation of AT-752, a double prodrug of a guanosine nucleotide analog with in vitro and in vivo activity against dengue and other flaviviruses. Antimicrob Agents Chemother 65: e0098821.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Takhampunya R, Ubol S, Houng HS, Cameron CE, Padmanabhan R, 2006. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol 87: 19471952.

  • 61.

    Li C, et al., 2017. Chloroquine, a FDA-approved drug, prevents Zika virus infection and its associated congenital microcephaly in mice. EBioMedicine 24: 189194.

  • 62.

    Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, Tran HT, Simmons CP, 2010. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4: e785.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Borges MC, Castro LA, Fonseca BA, 2013. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz 108: 596599.

  • 64.

    Watanabe S, Chan KW, Dow G, Ooi EE, Low JG, Vasudevan SG, 2016. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy. Antiviral Res 127: 1019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Low JG, et al., 2014. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): A phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis 14: 706715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R, 2014. Inhibitory effect of doxycycline against dengue virus replication in vitro. Arch Virol 159: 711718.

  • 67.

    Farfan-Morales CN, Cordero-Rivera CD, Osuna-Ramos JF, Monroy-Munoz IE, De Jesus-Gonzalez LA, Munoz-Medina JE, Hurtado-Monzon AM, Reyes-Ruiz JM, Del Angel RM, 2021. The antiviral effect of metformin on Zika and dengue virus infection. Sci Rep 11: 8743.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Htun HL, Yeo TW, Tam CC, Pang J, Leo YS, Lye DC, 2018. Metformin use and severe dengue in diabetic adults. Sci Rep 8: 3344.

  • 69.

    Suputtamongkol Y, et al., 2021. Ivermectin accelerates circulating nonstructural Protein 1 (NS1) clearance in adult dengue patients: A combined phase 2/3 randomized double-blinded placebo controlled trial. Clin Infect Dis 72: e586e593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Nguyen TH, et al., 2013. Corticosteroids for dengue – Why don’t they work? PLoS Negl Trop Dis 7: e2592.

  • 71.

    Tam DT, et al., 2012. Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: A randomized, placebo-controlled trial. Clin Infect Dis 55: 12161224.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Whitehorn J, et al., 2016. Lovastatin for the treatment of adult patients with dengue: A randomized, double-blind, placebo-controlled trial. Clin Infect Dis 62: 468476.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Morrison J, Rathore APS, Mantri CK, Aman SAB, Nishida A, St John AL, 2017. Transcriptional profiling confirms the therapeutic effects of mast cell stabilization in a dengue disease model. J Virol 91: e00617-17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Morchang A, Malakar S, Poonudom K, Noisakran S, Yenchitsomanus PT, Limjindaporn T, 2021. Melatonin inhibits dengue virus infection via the sirtuin 1-mediated interferon pathway. Viruses 13: 659.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Nitinai N, Nasomsong W, Chuerboonchai W, Tweekittikul A, Khingmontri V, Panuvatvanich B, Bangchuad T, Pongpraijaroen M, Roongfa-Ngarm T, Vasikasin V, 2024. Effect of montelukast in preventing dengue with warning signs among patients with dengue: A multicenter, randomized, double-blind, placebo-controlled trial. PLoS Negl Trop Dis 18: e0011927.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Chen Y, Li Y, Wang X, Zou P, 2019. Montelukast, an anti-asthmatic drug, inhibits Zika virus infection by disrupting viral integrity. Front Microbiol 10: 3079.

  • 77.

    St John AL, Rathore AP, Raghavan B, Ng ML, Abraham SN, 2013. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife 2: e00481.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Villamor E, Villar LA, Lozano A, Herrera VM, Herran OF, 2017. Vitamin D serostatus and dengue fever progression to dengue hemorrhagic fever/dengue shock syndrome. Epidemiol Infect 145: 29612970.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Puerta-Guardo H, Medina F, De la Cruz Hernandez SI, Rosales VH, Ludert JE, del Angel RM, 2012. The 1α,25-dihydroxy-vitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral Res 94: 5761.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Malavige GN, et al., 2018. A preliminary study on efficacy of rupatadine for the treatment of acute dengue infection. Sci Rep 8: 3857.

  • 81.

    Glasner DR, Ratnasiri K, Puerta-Guardo H, Espinosa DA, Beatty PR, Harris E, 2017. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog 13: e1006673.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Dorigatti I, McCormack C, Nedjati-Gilani G, Ferguson NM, 2018. Using Wolbachia for dengue control: Insights from modelling. Trends Parasitol 34: 102113.

  • 83.

    Utarini A, et al., 2021. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 384: 21772186.

  • 84.

    Pinto SB, et al., 2021. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niteroi, Brazil: A quasi-experimental study. PLoS Negl Trop Dis 15: e0009556.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 964 964 291
Full Text Views 58 58 24
PDF Downloads 65 65 28
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save