Kemenesi G, Bányai K, 2018. Tick-borne flaviviruses, with a focus on Powassan virus. Clin Microbiol Rev 32: e00106-17.
Goethert HK, Spielman A, Campbell EN, Telford SR, Ebel GD, 2000. Enzootic transmission of deer tick virus in New England and Wisconsin sites. Am J Trop Med Hyg 63: 36–42.
Telford SR, Armstrong PM, Katavolos P, Foppa I, Garcia AS, Wilson ML, Spielman A, 1997. A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerg Infect Dis 3: 165–170.
Lubelczyk C, Lacombe EH, Elias SP, Beati L, Rand PW, Smith RP, 2014. Parasitism of mustelids by ixodid ticks (Acari: Ixodidae), Maine and New Hampshire, USA. Ticks Tick Borne Dis 5: 432–435.
Rand PW, Lacombe EH, Dearborn R, Cahill B, Elias S, Lubelczyk CB, Beckett GA, Smith RP Jr, 2007. Passive surveillance in Maine, an area emergent for tick-borne diseases. J Med Entomol 44: 1118–1129.
Ebel GD, Foppa I, Spielman A, Telford SR, 1999. A focus of deer tick virus transmission in the northcentral United States. Emerg Infect Dis 5: 570–574.
Xu G, Mather TN, Hollingsworth CS, Rich SM, 2016. Passive surveillance of Ixodes scapularis (Say), their biting activity, and associated pathogens in Massachusetts. Vector Borne Zoonotic Dis 16: 520–527.
Nemeth NM, Root J, Hartwig AE, Bowen RA, Bosco-Lauth AM, 2021. Powassan virus experimental infections in three wild mammal species. Am J Trop Med Hyg 104: 1048–1054.
Apanaskevich D, Oliver JH Jr, 2014. Life cycles and natural history of ticks. Sonenshine D & Roe M Biology of Ticks. 2nd ed. Oxford, England: Oxford University Press, 59–73.
Kuno G, Artsob H, Karabatsos N, Tsuchiya KR, Chang GJ, 2001. Genomic sequencing of deer tick virus and phylogeny of Powassan-related viruses of North America. Am J Trop Med Hyg 65: 671–676.
Subbotina EL, Loktev VB, 2012. Molecular evolution of the tick-borne encephalitis and powassan viruses. Mol Biol 46: 75–84.
Mlera L, Bloom ME, 2018. The role of mammalian reservoir hosts in tick-borne flavivirus biology. Front Cell Infect Microbiol 8: 298.
Goethert HK, Mather TN, Johnson RW, Telford SR, 2021. Incrimination of shrews as a reservoir for Powassan virus. Commun Biol 4: 1–8.
Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD, 2017. Tick-borne zoonoses in the United States: Persistent and emerging threats to human health. ILAR J 58: 319–335.
McMinn RJ, et al., 2023. Phylodynamics of deer tick virus in North America. Virus Evol 9: Vead008.
Robich RM, Cosenza DS, Elias SP, Henderson EF, Lubelczyk CB, Welch M, Smith RP, 2019. Prevalence and genetic characterization of deer tick virus (Powassan virus, lineage II) in Ixodes scapularis ticks collected in Maine. Am J Trop Med Hyg 101: 467–471.
Anderson JF, Armstrong PM, 2012. Prevalence and genetic characterization of powassan virus strains infecting Ixodes scapularis in Connecticut. Am J Trop Med Hyg 87: 754–759.
Dupuis AP II, Peters RJ, Prusinski MA, Falco RC, Ostfeld RS, Kramer LD, 2013. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State. Parasit Vectors 6: 185.
Brackney DE, Nofchissey RA, Fitzpatrick KA, Brown IK, Ebel GD, 2008. Stable prevalence of Powassan virus in Ixodes scapularis in a northern Wisconsin focus. Am J Trop Med Hyg 79: 971–973.
University of Maine Cooperative Extension, 2020. UMaine Tick Surveillance Program—Annual Report—2020. Available at: https://extension.umaine.edu/ticks/wp-content/uploads/sites/42/2021/02/UMaine-Tick-Surveillance-Program-Annual-Report-2020-1.pdf. Accessed June 26, 2024.
Lubelczyk CB, Elias SP, Rand PW, Holman MS, Lacombe EH, Smith RP, 2004. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ Entomol 33: 900–906.
Elias SP, Lubelczyk CB, Rand PW, Lacombe EH, Holman MS, Smith RP, 2006. Deer browse resistant exotic-invasive understory: An indicator of elevated human risk of exposure to Ixodes scapularis (Acari: Ixodidae) in southern Coastal Maine woodlands. J Med Entomol 43: 1142–1152.
Schindelin J, et al., 2012. Fiji: An open-source platform for biological-image analysis. Nat Methods 9: 676–682.
Randolph SE, Storey K, 1999. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J Med Entomol 36: 741–748.
Keirans JE, Hutcheson HJ, Durden LA, Klompen JSH, 1996. Ixodes (Ixodes) scapularis (Acari: Ixodidae): Redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. J Med Entomol 33: 297–318.
Keirans JE, Durden LA, 2005. Tick systematics and identification. Goodman JL, Dennis DT & Sonenshine DE Tick-Borne Diseases of Humans. Hoboken, New Jersey: John Wiley & Sons, Ltd., 123–140.
Keirans JE, Litwak TR, 1989. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol 26: 435–448.
Fish D, Dowler RC, 1989. Host associations of ticks (Acari: Ixodidae) parasitizing medium-sized mammals in a Lyme disease endemic area of southern New York. J Med Entomol 26: 200–209.
Williams SC, Ward JS, Worthley TE, Stafford KC, 2009. Managing Japanese barberry (Ranunculales: Berberidaceae) infestations reduces blacklegged tick (Acari: Ixodidae) abundance and infection prevalence with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae). Environ Entomol 38: 977–984.
Rehman A, Nijhof AM, Sauter-Louis C, Schauer B, Staubach C, Conraths FJ, 2017. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan. Parasit Vectors 10: 190.
Linske MA, Williams SC, Stafford KC, Ortega IM, 2018. Ixodes scapularis (Acari: Ixodidae) reservoir host diversity and abundance impacts on dilution of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in residential and woodland habitats in Connecticut, United States. J Med Entomol 55: 681–690.
Fikrig K, Martin E, Dang S, Fleur KS, Goldsmith H, Qu S, Rosenthal H, Pitcher S, Harrington LC, 2022. The effects of host availability and fitness on Aedes albopictus blood feeding patterns in New York. Am J Trop Med Hyg 106: 320–331.
Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti PC, Piantadosi A, 2020. Powassan virus neuropathology and genomic diversity in patients with fatal encephalitis. Open Forum Infect Dis 7: ofaa392.
R Core Team, 2023. R: A Language and Environment for Statistical Computing. Available at: https://www.R-project.org/. Accessed April 30, 2023.
Wickham H, 2016. Data analysis. Wickham H ggplot2: Elegant Graphics for Data Analysis. Cham, Switzerland: Springer International Publishing, 189–201.
Grolemund G, Wickham H, 2011. Dates and times made easy with lubridate. J Stat Softw 40: 1–25.
Wickham H, François R, Henry L, Müller K; RStudio, 2022. dplyr: A grammar of data manipulation. Available at: https://CRAN.R-project.org/package=dplyr.
Lenth RV, Buerkner P, Herve M, Jung M, Love J, Miguez F, Riebl H, Singmann H, 2022. emmeans: Estimated marginal means, aka least-squares means. Available at: https://CRAN.R-project.org/package=emmeans.
Kosmidis I, Pagui ECK, Konis K, Sartori N, 2021. brglm2: Bias reduction in generalized linear models. Available at: https://CRAN.R-project.org/package=brglm2.
Goethert HK, Telford SR, 2009. Nonrandom distribution of vector ticks (Dermacentor variabilis) Infected by Francisella tularensis. PLoS Pathog 5: e1000319.
Baxter L, 2021. Habitat Associations of a Powassan Virus Focus in Southern Maine .Ann Arbor, MI: ProQuest Information and Learning.
Mlera L, Meade-White K, Saturday G, Scott D, Bloom ME, 2017. Modeling Powassan virus infection in Peromyscus leucopus, a natural host. PLoS Negl Trop Dis 11: e0005346.
Williams SC, Ward JS, 2010. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA. Environ Entomol 39: 1911–1921.
Linske MA, Williams SC, Ward JS, Iii KCS, 2018. Indirect effects of Japanese barberry infestations on white-footed mice exposure to Borrelia burgdorferi. Environ Entomol 47: 795–802.
D’Antonio BE, Ehlert K, Pitt AL, 2023. The effects of varying degrees of Japanese barberry invasion on the abundance of blacklegged ticks and white-footed mice. BIOS 94: 12–19.
Estrada-Peña A, Ortega C, Sánchez N, DeSimone L, Sudre B, Suk JE, Semenza JC, 2011. Correlation of Borrelia burgdorferi Sensu Lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western Palearctic. Appl Environ Microbiol 77: 3838–3845.
Shih CM, Telford SR, Spielman A, 1995. Effect of ambient temperature on competence of deer ticks as hosts for Lyme disease spirochetes. J Clin Microbiol 33: 958–961.
Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW, 2013. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg 88: 689–697.
Reisen WK, Meyer RP, Presser SB, Hardy JL, 1993. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J Med Entomol 30: 151–160.
Vogels CBF, Fros JJ, Göertz GP, Pijlman GP, Koenraadt CJM, 2016. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit Vectors 9: 1–7.
Berger KA, Ginsberg HS, Gonzalez L, Mather TN, 2014. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae). J Med Entomol 51: 769–776.
Berger KA, Ginsberg HS, Dugas KD, Hamel LH, Mather TN, 2014. Adverse moisture events predict seasonal abundance of Lyme disease vector ticks (Ixodes scapularis). Parasit Vectors 7: 181.
Eisen RJ, Eisen L, Ogden NH, Beard CB, 2016. Linkages of weather and climate with Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), enzootic transmission of Borrelia burgdorferi, and Lyme disease in North America. J Med Entomol 53: 250–261.
Piesman J, Spielman A, 1979. Host-associations and seasonal abundance of immature Ixodes dammini in southeastern Massachusetts. Ann Entomol Soc Am 72: 829–832.
Randolph SE, Gem L, Nuttall PA, 1996. Epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12: 472–479.
Brown LN, 1967. Ecological distribution of six species of shrews and comparison of sampling methods in the central Rocky Mountains. J Mammal 48: 617–623.
Maddock AH, 1992. Comparison of two methods for trapping rodents and shrew. Isr J Ecol Evol 38: 333–340.
Korpimäki E, 1986. Predation causing synchronous decline phases in microtine and shrew populations in western Finland. Oikos 46: 124–127.
Korpimäki E, Norrdahl K, 1989. Avian and mammalian predators of shrews in Europe: Regional differences, between-year and seasonal variation, and mortality due to predation. Ann Zool Fenn 26: 389–400.
Anderson JF, Magnarelli LA, 1984. Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale J Biol Med 57: 627–641.
LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F, 2003. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100: 567–571.
Litvaitis JA, Johnson B, Jakubas W, Morris K, 2003. Distribution and habitat features associated with remnant populations of New England cottontails in Maine. Can J Zool 81: 877–887.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1359 | 1359 | 127 |
Full Text Views | 104 | 104 | 8 |
PDF Downloads | 120 | 120 | 9 |
Powassan virus lineage II or deer tick virus (DTV) is a rare but increasingly reported human infection in the United States transmitted by Ixodes scapularis ticks. The virus is thought to be maintained in environmental foci that are optimal for tick and vertebrate reservoirs, but details on DTV ecology are poorly understood. We investigated DTV tick infection rates and reservoir host abundance in a focus of consistent DTV activity in Maine, USA. Host and tick abundance, vegetation, and microclimate conditions were measured in three forest sites representing increasing invasive understory infestation. Sites were selected representing native understory, mixed vegetation with some invasive Japanese barberry (Berberis thunbergii), and a highly invasive site dominated by Japanese barberry. Japanese barberry in the mixed vegetation site averaged 1 m in height with space between plants, whereas the highly invasive site had impenetrable Japanese barberry over 1.5 m. The DTV infection rate was greater in the highly invasive site. Density of I. scapularis ticks were significantly lower in the native forest site, and no DTV was found. Another feature of the DTV focus was more stable humid microclimate throughout the year compared with the other sites and a nearby continuous section of forest, consistent with reports from Connecticut, USA. We conclude that invasive Japanese barberry stands provide favorable and consistent microclimate conditions to maintain high DTV infection rates annually among questing I. scapularis ticks. Understanding environmental and landscape features that support high infection rates could lead to the identification of high-risk habitats for contracting DTV.
Financial support: This work was supported through Cooperative Agreement
Current contact information: Charles Lubelczyk, Molly C. Meagher, Robert P. Smith, and Rebecca M. Robich, MaineHealth Institute for Research Lyme and Vector-Borne Disease Laboratory, Scarborough, Maine, E-mails: Charles.lubelczyk@mainehealth.org, Molly.meagher@mainehealth.org, smithr@mmc.org, and Rebecca.robich@mainhealth.org. Laura C. Harrington and Jake Angelico, Department of Entomology, Cornell University, Ithaca, NY, E-mails: lch27@cornell.edu and ja652@cornell.edu.
Kemenesi G, Bányai K, 2018. Tick-borne flaviviruses, with a focus on Powassan virus. Clin Microbiol Rev 32: e00106-17.
Goethert HK, Spielman A, Campbell EN, Telford SR, Ebel GD, 2000. Enzootic transmission of deer tick virus in New England and Wisconsin sites. Am J Trop Med Hyg 63: 36–42.
Telford SR, Armstrong PM, Katavolos P, Foppa I, Garcia AS, Wilson ML, Spielman A, 1997. A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerg Infect Dis 3: 165–170.
Lubelczyk C, Lacombe EH, Elias SP, Beati L, Rand PW, Smith RP, 2014. Parasitism of mustelids by ixodid ticks (Acari: Ixodidae), Maine and New Hampshire, USA. Ticks Tick Borne Dis 5: 432–435.
Rand PW, Lacombe EH, Dearborn R, Cahill B, Elias S, Lubelczyk CB, Beckett GA, Smith RP Jr, 2007. Passive surveillance in Maine, an area emergent for tick-borne diseases. J Med Entomol 44: 1118–1129.
Ebel GD, Foppa I, Spielman A, Telford SR, 1999. A focus of deer tick virus transmission in the northcentral United States. Emerg Infect Dis 5: 570–574.
Xu G, Mather TN, Hollingsworth CS, Rich SM, 2016. Passive surveillance of Ixodes scapularis (Say), their biting activity, and associated pathogens in Massachusetts. Vector Borne Zoonotic Dis 16: 520–527.
Nemeth NM, Root J, Hartwig AE, Bowen RA, Bosco-Lauth AM, 2021. Powassan virus experimental infections in three wild mammal species. Am J Trop Med Hyg 104: 1048–1054.
Apanaskevich D, Oliver JH Jr, 2014. Life cycles and natural history of ticks. Sonenshine D & Roe M Biology of Ticks. 2nd ed. Oxford, England: Oxford University Press, 59–73.
Kuno G, Artsob H, Karabatsos N, Tsuchiya KR, Chang GJ, 2001. Genomic sequencing of deer tick virus and phylogeny of Powassan-related viruses of North America. Am J Trop Med Hyg 65: 671–676.
Subbotina EL, Loktev VB, 2012. Molecular evolution of the tick-borne encephalitis and powassan viruses. Mol Biol 46: 75–84.
Mlera L, Bloom ME, 2018. The role of mammalian reservoir hosts in tick-borne flavivirus biology. Front Cell Infect Microbiol 8: 298.
Goethert HK, Mather TN, Johnson RW, Telford SR, 2021. Incrimination of shrews as a reservoir for Powassan virus. Commun Biol 4: 1–8.
Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD, 2017. Tick-borne zoonoses in the United States: Persistent and emerging threats to human health. ILAR J 58: 319–335.
McMinn RJ, et al., 2023. Phylodynamics of deer tick virus in North America. Virus Evol 9: Vead008.
Robich RM, Cosenza DS, Elias SP, Henderson EF, Lubelczyk CB, Welch M, Smith RP, 2019. Prevalence and genetic characterization of deer tick virus (Powassan virus, lineage II) in Ixodes scapularis ticks collected in Maine. Am J Trop Med Hyg 101: 467–471.
Anderson JF, Armstrong PM, 2012. Prevalence and genetic characterization of powassan virus strains infecting Ixodes scapularis in Connecticut. Am J Trop Med Hyg 87: 754–759.
Dupuis AP II, Peters RJ, Prusinski MA, Falco RC, Ostfeld RS, Kramer LD, 2013. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State. Parasit Vectors 6: 185.
Brackney DE, Nofchissey RA, Fitzpatrick KA, Brown IK, Ebel GD, 2008. Stable prevalence of Powassan virus in Ixodes scapularis in a northern Wisconsin focus. Am J Trop Med Hyg 79: 971–973.
University of Maine Cooperative Extension, 2020. UMaine Tick Surveillance Program—Annual Report—2020. Available at: https://extension.umaine.edu/ticks/wp-content/uploads/sites/42/2021/02/UMaine-Tick-Surveillance-Program-Annual-Report-2020-1.pdf. Accessed June 26, 2024.
Lubelczyk CB, Elias SP, Rand PW, Holman MS, Lacombe EH, Smith RP, 2004. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ Entomol 33: 900–906.
Elias SP, Lubelczyk CB, Rand PW, Lacombe EH, Holman MS, Smith RP, 2006. Deer browse resistant exotic-invasive understory: An indicator of elevated human risk of exposure to Ixodes scapularis (Acari: Ixodidae) in southern Coastal Maine woodlands. J Med Entomol 43: 1142–1152.
Schindelin J, et al., 2012. Fiji: An open-source platform for biological-image analysis. Nat Methods 9: 676–682.
Randolph SE, Storey K, 1999. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J Med Entomol 36: 741–748.
Keirans JE, Hutcheson HJ, Durden LA, Klompen JSH, 1996. Ixodes (Ixodes) scapularis (Acari: Ixodidae): Redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. J Med Entomol 33: 297–318.
Keirans JE, Durden LA, 2005. Tick systematics and identification. Goodman JL, Dennis DT & Sonenshine DE Tick-Borne Diseases of Humans. Hoboken, New Jersey: John Wiley & Sons, Ltd., 123–140.
Keirans JE, Litwak TR, 1989. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol 26: 435–448.
Fish D, Dowler RC, 1989. Host associations of ticks (Acari: Ixodidae) parasitizing medium-sized mammals in a Lyme disease endemic area of southern New York. J Med Entomol 26: 200–209.
Williams SC, Ward JS, Worthley TE, Stafford KC, 2009. Managing Japanese barberry (Ranunculales: Berberidaceae) infestations reduces blacklegged tick (Acari: Ixodidae) abundance and infection prevalence with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae). Environ Entomol 38: 977–984.
Rehman A, Nijhof AM, Sauter-Louis C, Schauer B, Staubach C, Conraths FJ, 2017. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan. Parasit Vectors 10: 190.
Linske MA, Williams SC, Stafford KC, Ortega IM, 2018. Ixodes scapularis (Acari: Ixodidae) reservoir host diversity and abundance impacts on dilution of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in residential and woodland habitats in Connecticut, United States. J Med Entomol 55: 681–690.
Fikrig K, Martin E, Dang S, Fleur KS, Goldsmith H, Qu S, Rosenthal H, Pitcher S, Harrington LC, 2022. The effects of host availability and fitness on Aedes albopictus blood feeding patterns in New York. Am J Trop Med Hyg 106: 320–331.
Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti PC, Piantadosi A, 2020. Powassan virus neuropathology and genomic diversity in patients with fatal encephalitis. Open Forum Infect Dis 7: ofaa392.
R Core Team, 2023. R: A Language and Environment for Statistical Computing. Available at: https://www.R-project.org/. Accessed April 30, 2023.
Wickham H, 2016. Data analysis. Wickham H ggplot2: Elegant Graphics for Data Analysis. Cham, Switzerland: Springer International Publishing, 189–201.
Grolemund G, Wickham H, 2011. Dates and times made easy with lubridate. J Stat Softw 40: 1–25.
Wickham H, François R, Henry L, Müller K; RStudio, 2022. dplyr: A grammar of data manipulation. Available at: https://CRAN.R-project.org/package=dplyr.
Lenth RV, Buerkner P, Herve M, Jung M, Love J, Miguez F, Riebl H, Singmann H, 2022. emmeans: Estimated marginal means, aka least-squares means. Available at: https://CRAN.R-project.org/package=emmeans.
Kosmidis I, Pagui ECK, Konis K, Sartori N, 2021. brglm2: Bias reduction in generalized linear models. Available at: https://CRAN.R-project.org/package=brglm2.
Goethert HK, Telford SR, 2009. Nonrandom distribution of vector ticks (Dermacentor variabilis) Infected by Francisella tularensis. PLoS Pathog 5: e1000319.
Baxter L, 2021. Habitat Associations of a Powassan Virus Focus in Southern Maine .Ann Arbor, MI: ProQuest Information and Learning.
Mlera L, Meade-White K, Saturday G, Scott D, Bloom ME, 2017. Modeling Powassan virus infection in Peromyscus leucopus, a natural host. PLoS Negl Trop Dis 11: e0005346.
Williams SC, Ward JS, 2010. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA. Environ Entomol 39: 1911–1921.
Linske MA, Williams SC, Ward JS, Iii KCS, 2018. Indirect effects of Japanese barberry infestations on white-footed mice exposure to Borrelia burgdorferi. Environ Entomol 47: 795–802.
D’Antonio BE, Ehlert K, Pitt AL, 2023. The effects of varying degrees of Japanese barberry invasion on the abundance of blacklegged ticks and white-footed mice. BIOS 94: 12–19.
Estrada-Peña A, Ortega C, Sánchez N, DeSimone L, Sudre B, Suk JE, Semenza JC, 2011. Correlation of Borrelia burgdorferi Sensu Lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western Palearctic. Appl Environ Microbiol 77: 3838–3845.
Shih CM, Telford SR, Spielman A, 1995. Effect of ambient temperature on competence of deer ticks as hosts for Lyme disease spirochetes. J Clin Microbiol 33: 958–961.
Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW, 2013. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg 88: 689–697.
Reisen WK, Meyer RP, Presser SB, Hardy JL, 1993. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J Med Entomol 30: 151–160.
Vogels CBF, Fros JJ, Göertz GP, Pijlman GP, Koenraadt CJM, 2016. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit Vectors 9: 1–7.
Berger KA, Ginsberg HS, Gonzalez L, Mather TN, 2014. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae). J Med Entomol 51: 769–776.
Berger KA, Ginsberg HS, Dugas KD, Hamel LH, Mather TN, 2014. Adverse moisture events predict seasonal abundance of Lyme disease vector ticks (Ixodes scapularis). Parasit Vectors 7: 181.
Eisen RJ, Eisen L, Ogden NH, Beard CB, 2016. Linkages of weather and climate with Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), enzootic transmission of Borrelia burgdorferi, and Lyme disease in North America. J Med Entomol 53: 250–261.
Piesman J, Spielman A, 1979. Host-associations and seasonal abundance of immature Ixodes dammini in southeastern Massachusetts. Ann Entomol Soc Am 72: 829–832.
Randolph SE, Gem L, Nuttall PA, 1996. Epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12: 472–479.
Brown LN, 1967. Ecological distribution of six species of shrews and comparison of sampling methods in the central Rocky Mountains. J Mammal 48: 617–623.
Maddock AH, 1992. Comparison of two methods for trapping rodents and shrew. Isr J Ecol Evol 38: 333–340.
Korpimäki E, 1986. Predation causing synchronous decline phases in microtine and shrew populations in western Finland. Oikos 46: 124–127.
Korpimäki E, Norrdahl K, 1989. Avian and mammalian predators of shrews in Europe: Regional differences, between-year and seasonal variation, and mortality due to predation. Ann Zool Fenn 26: 389–400.
Anderson JF, Magnarelli LA, 1984. Avian and mammalian hosts for spirochete-infected ticks and insects in a Lyme disease focus in Connecticut. Yale J Biol Med 57: 627–641.
LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F, 2003. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100: 567–571.
Litvaitis JA, Johnson B, Jakubas W, Morris K, 2003. Distribution and habitat features associated with remnant populations of New England cottontails in Maine. Can J Zool 81: 877–887.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1359 | 1359 | 127 |
Full Text Views | 104 | 104 | 8 |
PDF Downloads | 120 | 120 | 9 |