Scorpion Envenoming as an Emerging Public Health Problem in Paraguay, Bolivia, and Midwest Brazil: Involvement of Tityus confluens and the Need for a Panregional Evaluation of Available Antivenoms

Adolfo Borges Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay;
Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela;

Search for other papers by Adolfo Borges in
Current site
Google Scholar
PubMed
Close
,
Antonieta Rojas de Arias Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay;

Search for other papers by Antonieta Rojas de Arias in
Current site
Google Scholar
PubMed
Close
,
Ana María Montaño Centro Nacional de Enfermedades Tropicales, Santa Cruz de la Sierra, Bolivia;

Search for other papers by Ana María Montaño in
Current site
Google Scholar
PubMed
Close
, and
Cláudio Mauricio V. de Souza Laboratório de Artrópodes, Instituto Vital Brazil, Niterói, Brazil

Search for other papers by Cláudio Mauricio V. de Souza in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

This contribution highlights the emergence of a newly endemic region for scorpion envenoming in South America, covering eastern Bolivia, Paraguay, and the midwestern Brazilian states of Mato Grosso and Mato Grosso do Sul. These areas have not historically been known to harbor life-threatening scorpion species. Tityus confluens, a parthenogenetic species of medical significance in Argentina, has been identified in severe and lethal human cases in Bolivia and Paraguay. Given that the clinical use of scorpion antivenom preparations in the region has often lacked preclinical data and considering the significant burden of scorpion envenoming, we propose a panregional evaluation of available anti-Tityus antivenoms. This evaluation, along with interdisciplinary efforts at a multinational scale to control scorpionism, aims to determine their true neutralization capacity and potential clinical efficacy against known culprits in the Southern Cone of South America and other regions endemic for scorpion envenoming on the continent.

Author Notes

Current contact information: Adolfo Borges, Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay, and Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela, E-mail: borges.adolfo@gmail.com. Antonieta Rojas de Arias, Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay, E-mail: rojasdearias@gmail.com. Ana María Montaño, Centro Nacional de Enfermedades Tropicales, Santa Cruz de la Sierra, Bolivia, E-mail: anamontano.biologa@gmail.com. Cláudio Mauricio V. de Souza, Laboratório de Artrópodes, Instituto Vital Brazil, Niterói, Brazil, E-mail: artropodos@vitalbrazil.rj.gov.br.

Address correspondence to Adolfo Borges, Centro para el Desarrollo de la Investigación Científica, Manduvira 635, Asunción 1255, Paraguay. E-mail: borges.adolfo@gmail.com
  • 1.

    Chippaux JP, 2012. Emerging options for the management of scorpion stings. Drug Des Devel Ther 6: 165173.

  • 2.

    Laraba-Djebari F, Adi-Bessalem S, Hammoudi-Triki D, 2015. Scorpion venoms: Pathogenesis and biotherapies. Gopalakrishnakone P, Schwartz EF, Possani LD & Rodríguez de la Vega RC Scorpion Venoms. Dordrecht, The Netherlands: Springer Dordrecht, 63106.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Khemili D, Laraba-Djebari F, Hammoudi-Triki D, 2019. Involvement of Toll-like receptor 4 in neutrophil-mediated inflammation, oxidative stress and tissue damage induced by scorpion venom. Inflammation 43: 155167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Reis MB, Zoccal KF, Gardinassi LG, Faccioli LH, 2019. Scorpion envenomation and inflammation: Beyond neurotoxic effects. Toxicon 167: 174179.

  • 5.

    Delgado-Prudencio G, Cid-Uribe JI, Morales JA, Possani LD, Ortiz E, Romero-Gutiérrez T, 2022. The enzymatic core of scorpion venoms. Toxins (Basel) 14: 248.

  • 6.

    Amaral CFS, Rezende NA, 2000. Treatment of scorpion envenoming should include both a potent specific antivenom and support of vital functions. Toxicon 38: 10051007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Boyer L, Degan J, Ruha AM, Mallie J, Mangin E, Alagón A, 2013. Safety of intravenous equine F(ab’)2: Insights following clinical trials involving 1534 recipients of scorpion antivenom. Toxicon 76: 386393.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rebahi H, Ba-M’hamed S, Still ME, Mouaffak Y, Younous S, Bennis M, 2022. Clinical features and prognosis of severe scorpion envenomation in children. Pediatr Int (Roma) 64: e14687.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dupre G, 2023. Nouvelle répartition mondiale des scorpions. Arachnides 111: 112.

  • 10.

    Borges A, Graham MJ, 2016. Phylogenetics of scorpions of medical importance. Gompalanokrishnanone P & Calvete JJ Venom Genomics and Proteomics. Dordrecht, The Netherlands: Springer Netherlands, 81103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Roodt AR, 2014. Comments on environmental and sanitary aspects of the scorpionism by Tityus trivittatus in Buenos Aires City, Argentina. Toxins (Basel) 6: 14341452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    de Souza CMV, Bochner R, 2022. Os Animais Peconhentos na Saúde Pública. Rio de Janeiro, Brazil: Editora Fiocruz.

  • 13.

    Borges A, et al., 2020. Venom diversity in the neotropical scorpion genus Tityus: Implications for antivenom design emerging from molecular and immunochemical analyses across endemic areas of Scorpionism. Acta Trop 204: 105346.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Guerrero-Vargas JA, Rodríguez J, Ayerbe S, Flórez E, Beltrán J, 2015. Scorpionism and dangerous species of Colombia. Gopalakrishnakone P, Possani LD, Schwartz EF & Rodríguez de la Vega RC Scorpion Venoms. Dordretch, The Netherlands: Springer Netherlands, 245272.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Borges A, Graham MR, Cândido DM, Pardal PPO, 2021. Amazonian scorpions and scorpionism: Integrating toxinological, clinical, and phylogenetic data to combat a human health crisis in the world’s most diverse rainforest. J Venom Anim Toxins Incl Trop Dis 27: e20210028.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Borges A, Román J, 2023. Case report: Fatal scorpion envenomation in a Shuar child by Tityus cisandinus from Amazonian Ecuador: A call for specific antivenom availability in the Amazon Basin. Am J Trop Med Hyg 108: 807810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Monteiro WM, et al., 2019. Perspectives and recommendations towards evidence-based health care for scorpion sting envenoming in the Brazilian Amazon: A comprehensive review. Toxicon 169: 6880.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Guerra-Duarte C, Saavedra-Langer R, Matavel A, Oliveira-Mendes BBR, Chavez-Olortegui C, Paiva ALB, 2023. Scorpion envenomation in Brazil: Current scenario and perspectives for containing an increasing health problem. PLoS Negl Trop Dis 17: e0011069.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    de Roodt A, Lago N, Salomón O, Laskowicz R, Neder de Román L, López R, Montero T, Vega V, 2009. A new venomous scorpion responsible for severe envenomation in Argentina: Tityus confluens. Toxicon 53: 18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ojanguren-Affilastro A, Bizzotto C, Lanari L, Lenicov MR, de Roodt A, 2019. Presencia de Tityus confluens Borelli en la ciudad de Buenos Aires y expansión de la distribución de las especies de importancia médica de Tityus (Scorpiones; Buthidae) en la Argentina. Rev Mus Argent Cienc Nat 21: 101112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Borges A, Rojas de Arias A, 2019. El accidente por escorpiones tóxicos en el Paraguay: Mito y realidad en el contexto de la emergencia por escorpionismo en el sudeste de la América del Sur. Rev Soc Cient Parag 24: 2735.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ardiles-Ruesjas S, Sanabria E, Portillo VHS, Jara L, Egea Vd, Sequera G, Alonso-Padilla J, Losada I, Pinazo MJ, 2024. Epidemiological and sociodemographic description of snakebite envenoming cases in Paraguay reported between 2015 and 2021. BMJ Public Health 2: e000359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Guerrero D, 2023. Arácnidos de Importancia Médica en Paraguay. XIV Muestra Nacional de Epidemiología. November 22–23, 2023. Asunción, Paraguay: Dirección General de Vigilancia de la Salud, Ministerio de Salud Pública y Bienestar Social de Paraguay.

    • PubMed
    • Export Citation
  • 24.

    Ojeda MA, Neder de Román LE, 2017. Escorpiones y escorpionismo en la provincia de Jujuy. Acta Toxicol Argent 25: 1222.

  • 25.

    Brites-Neto J, Duarte KM, 2015. Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil. Vet World 8: 823830.

  • 26.

    Von Eickstedt V, Ribeiro L, Candido DM, Albuquerque M, Jorge M, 1996. Evolution of scorpionism by Tityus bahiensis (Perty) and Tityus serrulatus Lutz and Mello and geographical distribution of the two species in the state of São Paulo-Brazil. J Venom Anim Toxins 2: 92105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lourenço W, 1979. La repartition géographique du complexe Tityus trivittatus (Scorpiones, Buthidae). Revista Nordestina de Biologia 2: 3749.

  • 28.

    Auza-Santiváñez JC, Franco-Lacato AO, 2023. Picadura de escorpión en Bolivia: Una revisión crítica de la literatura. Gac Méd Boliv 46: 9196.

  • 29.

    Acosta LE, Ochoa JA, 2002. Lista de los escorpiones bolivianos (Chelicerata; Scorpiones), con notas sobre su distribución. Rev Soc Entomol Argent 61: 1523.

  • 30.

    Humboldt-Paputsachis C, 2023. Actualización de la lista de especies del género Tityus (Escorpionida: Buthidae) (Koch, 1843) en Bolivia. J Selva Andina Res Soc 14: 39.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Montaño AM, Veliz Baldiviezo CD, de Souza CMV, 2024. Nuevos registros geograficos y médicos de escorpiones de la familia Buthidae (Arachnida: Scorpiones) en el sureste de Bolivia. Kempffiana20: 1–13.

    • PubMed
    • Export Citation
  • 32.

    de Oliveira RM, de Cristo SSV, de Albuquerque HBS, dos Santos Porto KA, de Souza JL, Seibert CS, 2020. O escorpionismo na area urbana de Palmas-Tocantins. Hygeia - Rev Bras Geogr Med Saude 16: 137158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lourenço W, da Silva E, 2007. A reappraisal of the geographical distribution of the complex Tityus confluens Borelli, 1899 (Scorpiones: Buthidae) with the description of a new species. Amazoniana XIX: 7786.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Carvalho LS, Brescovit AD, Souza CA, Raizer J, 2017. Checklist dos escorpiões (Arachnida, Scorpiones) do Mato Grosso do Sul, Brasil. Iheringia Ser Zool 107: e2017108.

  • 35.

    Bertani R, Martins R, Carvalho M, 2005. Notes on Tityus confluens Borelli, 1899 (Scorpiones: Buthidae) in Brazil. Zootaxa 869: 17.

  • 36.

    Porto TJ, Carvalho LS, de Souza CAR, Oliveira U, Brescovit AD, 2014. Escorpiões da Caatinga: Conhecimento atual e desafios. Bravo F & Calor A Artrópodes do Semiárido: Biodiversidade e Conservação. Feira de Santana, Brazil: Printmídia, 3346.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brazilian Information System for Notifiable Diseases, 2024. Acidente por Animais Peçonhentos, Notificações Registradas no Sistema de Informação de Agravos de Notificação, Brasil. Available at: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def. Accessed June 21, 2024.

    • PubMed
    • Export Citation
  • 38.

    Borges A, Rojas de Arias A, de Almeida Lima S, Lomonte B, Díaz C, Chávez-Olórtegui C, Graham MR, Kalapothakis E, Coronel C, de Roodt AR, 2020. Genetic and toxinological divergence among populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones: Buthidae) inhabiting Paraguay and Argentina. PLoS Negl Trop Dis 14: e0008899.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kalapothakis Y, et al., 2024. Divergence in toxin antigenicity and venom enzymes in Tityus melici, a medically important scorpion, despite transcriptomic and phylogenetic affinities with problematic Brazilian species. Int J Biol Macromol 263: 130311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Núñez L, Rigonatto B, Español S, 2011. Escorpionismo por Tityus confluens en un Paciente Pediátrico de la Provincia de Corrientes. Med Intensiva 28: 55.

  • 41.

    Seiter M, 2012. Developmental stages and reproductive biology in Tityus confluens Borelli, 1899 and Tityus ocelote (Francke & Stockwell, 1987) (Scorpiones, Buthidae). Rev Iber Aracnol 21: 113118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Pimenta RJG, Brandão-Dias PFP, Leal HG, do Carmo AO, de Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E, 2019. Selected to survive and kill: Tityus serrulatus, the Brazilian yellow scorpion. PLoS One 14: e0214075.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Martinez PA, Andrade MA, Bidau CJ, 2018. Potential effects of climate change on the risk of accidents with poisonous species of the genus Tityus (Scorpiones, Buthidae) in Argentina. Spat Spatio-Temporal Epidemiol 25: 6772.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Acosta LE, 1995. The scorpions of the Argentinian Western Chaco. I. Diversity and distributional patterns. Biogeographica 71: 4959.

  • 45.

    Ziegler T, Lourenço WR, 2002. New scorpion records from the Gran Chaco of Paraguay (Chelicerata, Scorpiones). Entomol Mitt Zool Mus Hambg 14: 6369.

  • 46.

    Murúa F, Acosta L, Acosta J, Coria C, 2002. Primeros registros de Tityus trivittatus Kraepelin (Scorpiones, Buthidae) en el oeste Argentino. Multequina (Mendoza) 11: 7578.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    López CA, 2021. Escorpiones de la provincia de Misiones, Argentina: Un elenco de interés médico. Revista Argentina de Salud Pública 13: 281290.

  • 48.

    Francke OF, 2008. A critical review of reports of parthenogenesis in scorpions (Arachnida). Rev Iber Aracnol 16: 93104.

  • 49.

    Murayama GP, Barbosa B, Willemart RH, 2023. Experimental approach to the dislodging effect and the mortality of a pesticide in the yellow scorpion Tityus serrulatus. PLoS One 18: e0289104.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    de Roodt AR, García SI, Salomón OD, Segre L, Dolab JA, Funes RF, de Titto EH, 2003. Epidemiological and clinical aspects of scorpionism by Tityus trivittatus in Argentina. Toxicon 41: 971977.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Sevcik C, D’Suze G, Díaz P, Salazar V, Hidalgo C, Azpúrua H, Bracho N, 2004. Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G’s F(ab′)2 extrusion mechanism from blood to tissues. Toxicon 44: 731741.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Torrez PP, Quiroga MM, Abati PA, Mascheretti M, Costa WS, Campos LP, França FO, 2015. Acute cerebellar dysfunction with neuromuscular manifestations after scorpionism presumably caused by Tityus obscurus in Santarem, Pará/Brazil. Toxicon 96: 6873.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Tanaka GD, Furtado MFD, Portaro FCV, Sant’Anna OA, Tambourgi DV, 2010. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis 4: e622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    World Health Organization, 2016. WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. Expert Committee on Biological Standardization. Geneva, Switzerland: WHO, 138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Fan HW, Vigilato MAN, Pompei JCA, Gutierrez JM; Red RELAPA, 2019. Situación de los laboratorios públicos productores de antivenenos en América Latina. Rev Panam Salud Publica 43: e92.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    de Arias AR, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F, 2022. Chagas disease control-surveillance in the Americas: The multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz 117: e210130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Wermelinger ED, 2022. Interdisciplinarity in the control strategy for urban vectors of arbovirus infections: A necessary dimension for Brazil. Cad Saude Publica 38: e00243321.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Candido DM, Margonari PA, 2024. Identificação de escorpiões. da Cruz AM, Vargas A & Ferreira de Lima FE Jr. Guia de Animais Peçonhentos do Brasil. Brasilia, Brazil: Ministério da Saúde, Secretaria de Vigilância em Saúde e Ambiente, Departamento de Doenças Transmissíveis, 96115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Ochoa JA, 2005. Patrones de distribución de escorpiones de la región andina en el sur peruano. Rev Peru Biol 12: 4968.

  • 60.

    Lourenço WR, Maury E, 1985. Contribution a la connaissance systématique des scorpions appartenant au “complexe” Tityus bolivianus Kraepelin, 1895 (Scorpiones, Buthidae). Revue Arachnologique 6: 107126.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Ojanguren Affilastro AA, Kochalka J, Guerrero-Orellana D, Garcete-Barrett B, de Roodt AR, Borges A, Ceccarelli S, 2021. Redefinition of the identity and phylogenetic position of Tityus trivittatus Kraepelin 1898, and description of Tityus carrilloi n. sp. (Scorpiones; Buthidae), the most medically important scorpion of southern South America. Rev Mus Argent Cienc Nat 23: 2755.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    González-Sponga MA, 1996. Guía para Identificar Escorpiones de Venezuela. Caracas, Venezuela: Cuadernos Lagoven.

  • 63.

    Guerrero D, Kochalka JA, 2015. Nuevos registros y revisión de localidades de Buthidae (Arachnida: Scorpiones) para el Paraguay. Bol Mus Nac Hist Nat Parag 19: 6266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Osnaya-Romero N, Acosta-Saavedra LC, Goytia-Acevedo R, Lares-Asseff I, Basurto-Celaya G, Perez-Guille G, Possani LD, Calderón-Aranda ES, 2016. Serum level of scorpion toxins, electrolytes and electrocardiogram alterations in Mexican children envenomed by scorpion sting. Toxicon 122: 103108.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Diaz P, Chowell G, Ceja G, D’Auria TC, Lloyd RC, Castillo-Chavez C, 2005. Pediatric electrocardiograph abnormalities following Centruroides limpidus tecomanus scorpion envenomation. Toxicon 45: 2731.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Otero R, et al., 2004. Scorpion envenoming in two regions of Colombia: Clinical, epidemiological and therapeutic aspects. Trans R Soc Trop Med Hyg 98: 742750.

  • 67.

    Borges A, Miranda RJ, Pascale JM, 2012. Scorpionism in Central America, with special reference to the case of Panama. J Venom Anim Toxins Incl Trop Dis 18: 130143.

  • 68.

    Ramírez M, Pérez KE, Breña N, Pacheco J, 2010. Emergencia hipertensiva en emponzañamiento escorpiónico pediátrico. Reporte de un caso. Arch Venez Pueric Pediatr 73: 2934.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    de Roodt AR, et al., 2019. Study on the obtaining of Tityus trivittatus venom in Argentina. Toxicon 159: 513.

Past two years Past Year Past 30 Days
Abstract Views 3504 3504 138
Full Text Views 48 48 8
PDF Downloads 59 59 10
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save