Whitworth JA , Hewitt K , 2005. Filariasis. Medicine (Baltimore) 33: 61–64.
Centers for Disease Control and Prevention , 2019. Lymphatic Filariasis. Available at: https://www.cdc.gov/filarial-worms/about/lymphatic-filariasis.html. Accessed April 18, 2019.
Simonsen PE , Fischer PU , Hoerauf A , Weil GJ , 2009. The filariases. Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, eds. Manson’s Tropical Diseases, 23rd ed. Philadelphia, PA: Saunders Ltd., 737–765.
Orihel TC , Eberhard ML , 1998. Zoonotic filariasis. Clin Microbiol Rev 11: 366.
Dreyer G , Dreyer P , Piessens W , 1999. Extralymphatic disease due to bancroftian filariasis. Braz J Med Biol Res 32: 1467–1472.
Gutierrez Y , 2000. Diagnostic Pathology of Parasitic Infections with Clinical Correlations, 2nd ed. New York, NY: Oxford University Press.
Vaid SJ , Luthra A , Karnik S , Ahuja AT , 2011. Facial wrigglies: Live extralymphatic filarial infestation in subcutaneous tissues of the head and neck. Br J Radiol 84: e126–e129.
Simón F , González-Miguel J , Diosdado A , Gómez PJ , Morchón R , Kartashev V , 2017. The complexity of zoonotic filariasis episystem and its consequences: A multidisciplinary view. BioMed Res Int 2017: 6436130.
Somsap Y , Boonroumkaew P , Somsap A , Rodpai R , Sadaow L , Sanpool O , Maleewong W , Intapan P , 2021. Ocular dirofilariasis case in Thailand confirmed by molecular analysis to be caused by Dirofilaria immitis. Am J Trop Med Hyg 106: 204.
Sukudom P , Phumee A , Siriyasatien P , 2018. First report on subconjunctival dirofilariasis in Thailand caused by a Dirofilaria sp. closely related to D. hongkongenesis. Acad J Sci Res 6: 114–116.
Nunthanid P , Roongruanchai K , Wongkamchai S , Sarasombath PT , 2020. Case report: Periorbital filariasis caused by Brugia malayi. Am J Trop Med Hyg 103: 2336–2338.
Thongpiya J , Sa-nguanraksa D , Samarnthai N , Sarasombath PT , 2020. Filariasis of the breast caused by Brugia pahangi: A concomitant finding with invasive ductal carcinoma. Parasitol Int 80: 102203.
Thongpiya J , Kreetitamrong S , Thongsit T , Toothong T , Rojanapanus S , Sarasombath P , 2021. The first case report of subcutaneous dirofilariasis caused by Dirofilaria repens in Thailand. Trop Parasitol 11: 125–127.
Suphap N , Somkijrungroj T , Kongwattananon W , Supawatjariyakul W , Pataradool T , Kraivichian K , Jantarabenjakul W , Tulvatana W , Preativatanyou K , 2024. Ocular Brugia pahangi filariasis complicated by severe macular damage in Thailand: Case report and literature review. Am J Trop Med Hyg 110: 1158–1164.
Taylor MJ , 2000. Wolbachia bacteria of filarial nematodes in the pathogenesis of disease and as a target for control. Trans R Soc Trop Med Hyg 94: 596–598.
Bouchery T , Karadjian G , Nieguitsila A , Martin C , 2013. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis. Clin Microbiol Infect 19: 131–140.
Wongkamchai S , Monkong N , Mahannol P , Taweethavonsawat P , Loymak S , Foongladda S , 2013. Rapid detection and identification of Brugia Malayi, B. Pahangi, and Dirofilaria immitis by high-resolution melting assay. Vector Borne Zoonotic Dis 13: 31–36.
Casiraghi M , Favia G , Cancrini G , Bartoloni A , Bandi C , 2001. Molecular identification of Wolbachia from the filarial nematode Mansonella ozzardi. Parasitol Res 87: 417–420.
Nuchprayoon S , Junpee A , Nithiuthai S , Chungpivat S , Suvannadabba S , Poovorawan Y , 2006. Detection of filarial parasites in domestic cats by PCR-RFLP of ITS1. Vet Parasitol 140: 366–372.
Werren JH , Windsor DM , 2000. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc Biol Sci 267: 1277–1285.
Zhou W , Rousset F , O’Neil S , 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265: 509–515.
Camacho C , Boratyn GM , Joukov V , Vera Alvarez R , Madden TL , 2023. ElasticBLAST: Accelerating sequence search via cloud computing. BMC Bioinformatics 24: 117.
Tamura K , Stecher G , Kumar S , 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38: 3022–3027.
Rojanapanus S , Toothong T , Boondej P , Thammapalo S , Khuanyoung N , Santabutr W , Prempree P , Gopinath D , Ramaiah KD , 2019. How Thailand eliminated lymphatic filariasis as a public health problem. Infect Dis Poverty 8: 1–15.
Chungpivat S , Sucharit S , 1993. Microfilariae in cats in Bangkok. Wetchasan Sattawaphaet 23: 75–87.
Wongkamchai S , Nochote H , Foongladda S , Dekumyoy P , Thammapalo S , Boitano JJ , Choochote W , 2014. A high resolution melting real time PCR for mapping of filaria infection in domestic cats living in brugian filariasis-endemic areas. Vet Parasitol 201: 120–127.
Iamsa-ard W et al., 2015. An outbreak investigation of autochthonous lymphatic filariasis in Wangchan district, Rayong, Thailand, December 2013–July 2014. Wkly Epidemiological Surveill Rep 46: 385–392.
Kaikuntod M , Thongkorn K , Tiwananthagorn S , Boonyapakorn C , 2018. Filarial worms in dogs in Southeast Asia. Vet Integr Sci 16: 1–17.
Dantas-Torres F , Otranto D , 2020. On the validity of “Candidatus Dirofilaria hongkongensis” and on the use of the provisional status Candidatus in zoological nomenclature. Parasit Vectors 13: 287.
Newman TE , Juergens AL , 2023. Filariasis. Treasure Island, FL: StatPearls.
Bartlett C , 2005. Parasitic Diseases of Wild Birds. Hoboken, NJ: Wiley-Blackwell.
Bain O , Otranto D , Diniz DG , dos Santos JN , de Oliveira NP , Frota de Almeida IN , Frota de Almeida RN , Frota de Almeida LN , Dantas-Torres F , de Almeida Sobrinho EF , 2011. Human intraocular filariasis caused by Pelecitus sp. nematode, Brazil. Emerg Infect Dis 17: 867–869.
Botero D , Aguledo L , Uribe F , Esslinger J , Beaver P , 1984. Intraocular filaria, a Loaina species, from man in Colombia. Am J Trop Med Hyg 33: 578–582.
Uni S et al., 2022. Description and molecular characterisation of Pelecitus copsychi Uni, Mat Udin & Martin n. sp. (Nematoda: Onchocercidae) from the white-rumped shama Copsychus malabaricus (Scopoli) (Passeriformes: Muscicapidae) of Pahang, Malaysia. Curr Res Parasitol Vector Borne Dis 2: 100078.
Lau YL , Lee WC , Xia J , Zhang G , Razali R , Anwar A , Fong MY , 2015. Draft genome of Brugia pahangi: High similarity between B. pahangi and B. malayi. Parasit Vectors 8: 451.
Areekit S , Khuchareontaworn S , Kanjanavas P , Sriyapai T , Pakpitchareon A , Khawsak P , Chansiri K , 2009. Molecular genetics analysis for co-infection of Brugia malayi and Brugia pahangi in cat reservoirs based on internal transcribed spacer region 1. Southeast Asian J Trop Med Public Health 40: 30–34.
Fong M , Noordin R , Lau Y , Cheong F , Yunus M , Idris Z , 2013. Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia malayi from Northeast Borneo and Thailand. Parasitology 140: 39–45.
Suzuki J , Kobayashi S , Okata U , Matsuzaki H , Mori M , Chen K , Iwata S , 2015. Molecular analysis of Dirofilaria repens removed from a subcutaneous nodule in a Japanese woman after a tour to Europe. Parasite 22: 2.
Satjawongvanit H , Phumee A , Tiawsirisup S , Sungpradit S , Brownell N , Siriyasatien P , Preativatanyou K , 2019. Molecular analysis of canine filaria and its Wolbachia endosymbionts in domestic dogs collected from two animal university hospitals in Bangkok metropolitan region, Thailand. Pathogens 8: 114.
Oh I , Kim K , Sung H , 2017. Molecular detection of Dirofilaria immitis specific gene from infected dog blood sample using polymerase chain reaction. Iran J Parasitol 12: 433–440.
Huggins L , Atapattu U , Young N , Traub R , Colella V , 2024. Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans. BMC Microbiol 24: 28.
Lefoulon E , Bain O , Makepeace B , d’Haese C , Uni S , Martin C , Gavotte L , 2016. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 4: e1840.
Taylor M , Voronin D , Johnston K , Ford L , 2013. Wolbachia filarial interactions. Cell Microbiol 15: 520–526.
Kamkong P , Jitsamai W , Thongmeesee K , Ratthawongjirakul P , Taweethavonsawat P , 2023. Genetic diversity and characterization of Wolbachia endosymbiont in canine filariasis. Acta Trop 246: 107000.
Sinha A , Li Z , Poole C , Ettwiller L , Lima N , Ferreira M , Fombad F , Wanji S , Carlow C , 2023. Multiple lineages of nematode-Wolbachia symbiosis in supergroup F and convergent loss of bacterioferritin in filarial Wolbachia. Genome Biol Evol 15: evad073.
Zimmermann BL , Cardoso GM , Bouchon D , Pezzi PH , Palaoro AV , Araujo PB , 2021. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites? Evol Ecol 35: 165–182.
Gehringer C , Kreidenweiss A , Flamen A , Antony J , Grobusch M , Bélard S , 2014. Molecular evidence of Wolbachia endosymbiosis in Mansonella perstans in Gabon, Central Africa. J Infect Dis 210: 1633–1638.
Keiser PB , Coulibaly Y , Kubofcik J , Diallo AA , Klion AD , Traoré SF , Nutman TB , 2008. Molecular identification of Wolbachia from the filarial nematode Mansonella perstans. Mol Biochem Parasitol 160: 123–128.
Guptavanij P , Harinasuta C , 1977. The periodicity of Brugia malayi in South Thailand. Southeast Asian J Trop Med Public Health 8: 185–189.
Zielke E , Hinz E , Sucharit S , 1993. Lymphatic filariasis in Thailand. A review on distribution and transmission. Mitt Osterr Ges Tropenmed Parasitol 15: 141–148.
Intarapuk A , Bhumiratana A , 2021. Investigation of Armigeres subalbatus, a vector of zoonotic Brugia pahangi filariasis in plantation areas in Suratthani, Southern Thailand. One Health 13: 100261.
Siriyasatien P , Intayot P , Sawaswong V , Preativatanyou K , Wacharapluesadee S , Boonserm R , Sor-Suwan S , Ayuyoe P , Cantos-Barreda A , Phumee A , 2023. Description of potential vectors of zoonotic filarial nematodes, Brugia pahangi, Setaria digitata, and Setaria labiatopapillosa in Thai mosquitoes. Heliyon 9: e13255.
Simón F , Siles-Lucas M , Morchón R , González-Miguel J , Mellado I , Carretón E , Montoya-Alonso JA , 2012. Human and animal dirofilariasis: The emergence of a zoonotic mosaic. Clin Microbiol Rev 25: 507–544.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 281 | 281 | 102 |
Full Text Views | 65 | 65 | 39 |
PDF Downloads | 84 | 84 | 37 |
Atypical presentations of filariasis have posed diagnostic challenges due to the complexity of identifying the causative species and the difficulties in both diagnosis and treatment. In this study, we present the integrative histological and molecular analysis of seven atypical filariasis cases observed in regions of nonendemicity of Thailand. All filariasis cases were initially diagnosed based on histological findings. To confirm the causative species, molecular characterization based on both filarial mitochondrial (mt 12S rRNA and COI genes) and nuclear ITS1 markers was performed, together with the identification of associated Wolbachia bacterial endosymbionts. Among the cases studied, Brugia pahangi (N = 3), Brugia malayi (N = 1), Dirofilaria sp. “hongkongensis” (N = 2), and a suspected novel filarial species genetically related to Pelecitus copsychi (N = 1) were identified. By targeting the 16S rRNA gene, Wolbachia was also molecularly amplified in two cases of infection with Dirofilaria sp. “hongkongensis.” Phylogenetic analysis further revealed that the detected Wolbachia could be classified into supergroups C and F, indicating the high genetic diversity of this endosymbiont in Dirofilaria sp. “hongkongensis.” Furthermore, this study demonstrates the consistency between histological findings and species identification based on mitochondrial loci rather than on the nuclear ITS1. This suggests the utility of mitochondrial markers, particularly COI, as a highly sensitive and reliable diagnostic tool for the detection and differentiation of filarial species in clinical specimens. Precise identification of the causative species will facilitate accurate diagnosis and treatment and is also essential for the development of epidemiological and preventive strategies for filariasis.
Financial support: Siriraj Integrative Center for Neglected Parasitic Diseases (SiCNPD) is supported by a grant from the
Disclosures: The study protocol was approved by the Siriraj Institutional Review Board of Research involving human subjects (SIRB) (COA no. Si 397/2019). A waiver of consent was approved by the SIRB, as this research involved no more than minimal risk to the subjects. The waiver did not adversely affect the rights and welfare of the owners of the specimens.
Authors’ contributions: P. T. Sarasombath, K. Preativatanyou, P. Sitthinamsuwan, P. Ruenchit, and S. Wongkamchai conceived the idea of the study and designed the experiments. P. T. Sarasombath received grant funding. P. Sitthinamsuwan, S. Silpa-Archa, M. Suwansirikul, and P. Chortrakarnkij provided clinical data. P. T. Sarasombath, K. Preativatanyou, P. Sitthinamsuwan, S. Wijit, K. Panyasu, and K. Roongruanchai performed histological and molecular studies. P. T. Sarasombath and K. Preativatanyou performed sequence analysis and phylogenetic construction. P. T. Sarasombath and K. Preativatanyou analyzed the integrated data. P. T. Sarasombath, K. Preativatanyou, P. Ruenchit, and S. Wongkamchai wrote the first draft of the manuscript. P. T. Sarasombath and K. Preativatanyou revised the manuscript. All authors reviewed, finalized, and approved the final manuscript.
Current contact information: Patsharaporn T. Sarasombath, Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, E-mails: p.techasintana@gmail.com or patsharaporn.tec@mahidol.ac.th. Panitta Sitthinamsuwan, Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, E-mails: panitta.sit@mahidol.ac.th or panitta.sit@gmail.com. Sirirat Wijit, Kedsara Panyasu, Kosol Roongruanchai, and Pichet Ruenchit, Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, E-mails: sirirat.wij@mahidol.ac.th, kedsara.pan@mahidol.ac.th, kosol.run@mahidol.ac.th, and pichet.rue@mahidol.edu. Sukhum Silpa-Archa, Department of Ophthalmology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand, E-mail: sukhumsilp@gmail.com. Matya Suwansirikul, Buddhasothorn Hospital, Ministry of Public Health, Na Mueang, Thailand, E-mail: s_matya@hotmail.com. Peerasak Chortrakarnkij, Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, E-mail: peerasak.cho@mahidol.ac.th. Kanok Preativatanyou, Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand, and Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, E-mail: kanok.pr@chula.ac.th. Sirichit Wongkamchai, Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, E-mail: sirichit.won@mahidol.ac.th.
Whitworth JA , Hewitt K , 2005. Filariasis. Medicine (Baltimore) 33: 61–64.
Centers for Disease Control and Prevention , 2019. Lymphatic Filariasis. Available at: https://www.cdc.gov/filarial-worms/about/lymphatic-filariasis.html. Accessed April 18, 2019.
Simonsen PE , Fischer PU , Hoerauf A , Weil GJ , 2009. The filariases. Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, eds. Manson’s Tropical Diseases, 23rd ed. Philadelphia, PA: Saunders Ltd., 737–765.
Orihel TC , Eberhard ML , 1998. Zoonotic filariasis. Clin Microbiol Rev 11: 366.
Dreyer G , Dreyer P , Piessens W , 1999. Extralymphatic disease due to bancroftian filariasis. Braz J Med Biol Res 32: 1467–1472.
Gutierrez Y , 2000. Diagnostic Pathology of Parasitic Infections with Clinical Correlations, 2nd ed. New York, NY: Oxford University Press.
Vaid SJ , Luthra A , Karnik S , Ahuja AT , 2011. Facial wrigglies: Live extralymphatic filarial infestation in subcutaneous tissues of the head and neck. Br J Radiol 84: e126–e129.
Simón F , González-Miguel J , Diosdado A , Gómez PJ , Morchón R , Kartashev V , 2017. The complexity of zoonotic filariasis episystem and its consequences: A multidisciplinary view. BioMed Res Int 2017: 6436130.
Somsap Y , Boonroumkaew P , Somsap A , Rodpai R , Sadaow L , Sanpool O , Maleewong W , Intapan P , 2021. Ocular dirofilariasis case in Thailand confirmed by molecular analysis to be caused by Dirofilaria immitis. Am J Trop Med Hyg 106: 204.
Sukudom P , Phumee A , Siriyasatien P , 2018. First report on subconjunctival dirofilariasis in Thailand caused by a Dirofilaria sp. closely related to D. hongkongenesis. Acad J Sci Res 6: 114–116.
Nunthanid P , Roongruanchai K , Wongkamchai S , Sarasombath PT , 2020. Case report: Periorbital filariasis caused by Brugia malayi. Am J Trop Med Hyg 103: 2336–2338.
Thongpiya J , Sa-nguanraksa D , Samarnthai N , Sarasombath PT , 2020. Filariasis of the breast caused by Brugia pahangi: A concomitant finding with invasive ductal carcinoma. Parasitol Int 80: 102203.
Thongpiya J , Kreetitamrong S , Thongsit T , Toothong T , Rojanapanus S , Sarasombath P , 2021. The first case report of subcutaneous dirofilariasis caused by Dirofilaria repens in Thailand. Trop Parasitol 11: 125–127.
Suphap N , Somkijrungroj T , Kongwattananon W , Supawatjariyakul W , Pataradool T , Kraivichian K , Jantarabenjakul W , Tulvatana W , Preativatanyou K , 2024. Ocular Brugia pahangi filariasis complicated by severe macular damage in Thailand: Case report and literature review. Am J Trop Med Hyg 110: 1158–1164.
Taylor MJ , 2000. Wolbachia bacteria of filarial nematodes in the pathogenesis of disease and as a target for control. Trans R Soc Trop Med Hyg 94: 596–598.
Bouchery T , Karadjian G , Nieguitsila A , Martin C , 2013. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis. Clin Microbiol Infect 19: 131–140.
Wongkamchai S , Monkong N , Mahannol P , Taweethavonsawat P , Loymak S , Foongladda S , 2013. Rapid detection and identification of Brugia Malayi, B. Pahangi, and Dirofilaria immitis by high-resolution melting assay. Vector Borne Zoonotic Dis 13: 31–36.
Casiraghi M , Favia G , Cancrini G , Bartoloni A , Bandi C , 2001. Molecular identification of Wolbachia from the filarial nematode Mansonella ozzardi. Parasitol Res 87: 417–420.
Nuchprayoon S , Junpee A , Nithiuthai S , Chungpivat S , Suvannadabba S , Poovorawan Y , 2006. Detection of filarial parasites in domestic cats by PCR-RFLP of ITS1. Vet Parasitol 140: 366–372.
Werren JH , Windsor DM , 2000. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc Biol Sci 267: 1277–1285.
Zhou W , Rousset F , O’Neil S , 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265: 509–515.
Camacho C , Boratyn GM , Joukov V , Vera Alvarez R , Madden TL , 2023. ElasticBLAST: Accelerating sequence search via cloud computing. BMC Bioinformatics 24: 117.
Tamura K , Stecher G , Kumar S , 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38: 3022–3027.
Rojanapanus S , Toothong T , Boondej P , Thammapalo S , Khuanyoung N , Santabutr W , Prempree P , Gopinath D , Ramaiah KD , 2019. How Thailand eliminated lymphatic filariasis as a public health problem. Infect Dis Poverty 8: 1–15.
Chungpivat S , Sucharit S , 1993. Microfilariae in cats in Bangkok. Wetchasan Sattawaphaet 23: 75–87.
Wongkamchai S , Nochote H , Foongladda S , Dekumyoy P , Thammapalo S , Boitano JJ , Choochote W , 2014. A high resolution melting real time PCR for mapping of filaria infection in domestic cats living in brugian filariasis-endemic areas. Vet Parasitol 201: 120–127.
Iamsa-ard W et al., 2015. An outbreak investigation of autochthonous lymphatic filariasis in Wangchan district, Rayong, Thailand, December 2013–July 2014. Wkly Epidemiological Surveill Rep 46: 385–392.
Kaikuntod M , Thongkorn K , Tiwananthagorn S , Boonyapakorn C , 2018. Filarial worms in dogs in Southeast Asia. Vet Integr Sci 16: 1–17.
Dantas-Torres F , Otranto D , 2020. On the validity of “Candidatus Dirofilaria hongkongensis” and on the use of the provisional status Candidatus in zoological nomenclature. Parasit Vectors 13: 287.
Newman TE , Juergens AL , 2023. Filariasis. Treasure Island, FL: StatPearls.
Bartlett C , 2005. Parasitic Diseases of Wild Birds. Hoboken, NJ: Wiley-Blackwell.
Bain O , Otranto D , Diniz DG , dos Santos JN , de Oliveira NP , Frota de Almeida IN , Frota de Almeida RN , Frota de Almeida LN , Dantas-Torres F , de Almeida Sobrinho EF , 2011. Human intraocular filariasis caused by Pelecitus sp. nematode, Brazil. Emerg Infect Dis 17: 867–869.
Botero D , Aguledo L , Uribe F , Esslinger J , Beaver P , 1984. Intraocular filaria, a Loaina species, from man in Colombia. Am J Trop Med Hyg 33: 578–582.
Uni S et al., 2022. Description and molecular characterisation of Pelecitus copsychi Uni, Mat Udin & Martin n. sp. (Nematoda: Onchocercidae) from the white-rumped shama Copsychus malabaricus (Scopoli) (Passeriformes: Muscicapidae) of Pahang, Malaysia. Curr Res Parasitol Vector Borne Dis 2: 100078.
Lau YL , Lee WC , Xia J , Zhang G , Razali R , Anwar A , Fong MY , 2015. Draft genome of Brugia pahangi: High similarity between B. pahangi and B. malayi. Parasit Vectors 8: 451.
Areekit S , Khuchareontaworn S , Kanjanavas P , Sriyapai T , Pakpitchareon A , Khawsak P , Chansiri K , 2009. Molecular genetics analysis for co-infection of Brugia malayi and Brugia pahangi in cat reservoirs based on internal transcribed spacer region 1. Southeast Asian J Trop Med Public Health 40: 30–34.
Fong M , Noordin R , Lau Y , Cheong F , Yunus M , Idris Z , 2013. Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia malayi from Northeast Borneo and Thailand. Parasitology 140: 39–45.
Suzuki J , Kobayashi S , Okata U , Matsuzaki H , Mori M , Chen K , Iwata S , 2015. Molecular analysis of Dirofilaria repens removed from a subcutaneous nodule in a Japanese woman after a tour to Europe. Parasite 22: 2.
Satjawongvanit H , Phumee A , Tiawsirisup S , Sungpradit S , Brownell N , Siriyasatien P , Preativatanyou K , 2019. Molecular analysis of canine filaria and its Wolbachia endosymbionts in domestic dogs collected from two animal university hospitals in Bangkok metropolitan region, Thailand. Pathogens 8: 114.
Oh I , Kim K , Sung H , 2017. Molecular detection of Dirofilaria immitis specific gene from infected dog blood sample using polymerase chain reaction. Iran J Parasitol 12: 433–440.
Huggins L , Atapattu U , Young N , Traub R , Colella V , 2024. Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans. BMC Microbiol 24: 28.
Lefoulon E , Bain O , Makepeace B , d’Haese C , Uni S , Martin C , Gavotte L , 2016. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 4: e1840.
Taylor M , Voronin D , Johnston K , Ford L , 2013. Wolbachia filarial interactions. Cell Microbiol 15: 520–526.
Kamkong P , Jitsamai W , Thongmeesee K , Ratthawongjirakul P , Taweethavonsawat P , 2023. Genetic diversity and characterization of Wolbachia endosymbiont in canine filariasis. Acta Trop 246: 107000.
Sinha A , Li Z , Poole C , Ettwiller L , Lima N , Ferreira M , Fombad F , Wanji S , Carlow C , 2023. Multiple lineages of nematode-Wolbachia symbiosis in supergroup F and convergent loss of bacterioferritin in filarial Wolbachia. Genome Biol Evol 15: evad073.
Zimmermann BL , Cardoso GM , Bouchon D , Pezzi PH , Palaoro AV , Araujo PB , 2021. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites? Evol Ecol 35: 165–182.
Gehringer C , Kreidenweiss A , Flamen A , Antony J , Grobusch M , Bélard S , 2014. Molecular evidence of Wolbachia endosymbiosis in Mansonella perstans in Gabon, Central Africa. J Infect Dis 210: 1633–1638.
Keiser PB , Coulibaly Y , Kubofcik J , Diallo AA , Klion AD , Traoré SF , Nutman TB , 2008. Molecular identification of Wolbachia from the filarial nematode Mansonella perstans. Mol Biochem Parasitol 160: 123–128.
Guptavanij P , Harinasuta C , 1977. The periodicity of Brugia malayi in South Thailand. Southeast Asian J Trop Med Public Health 8: 185–189.
Zielke E , Hinz E , Sucharit S , 1993. Lymphatic filariasis in Thailand. A review on distribution and transmission. Mitt Osterr Ges Tropenmed Parasitol 15: 141–148.
Intarapuk A , Bhumiratana A , 2021. Investigation of Armigeres subalbatus, a vector of zoonotic Brugia pahangi filariasis in plantation areas in Suratthani, Southern Thailand. One Health 13: 100261.
Siriyasatien P , Intayot P , Sawaswong V , Preativatanyou K , Wacharapluesadee S , Boonserm R , Sor-Suwan S , Ayuyoe P , Cantos-Barreda A , Phumee A , 2023. Description of potential vectors of zoonotic filarial nematodes, Brugia pahangi, Setaria digitata, and Setaria labiatopapillosa in Thai mosquitoes. Heliyon 9: e13255.
Simón F , Siles-Lucas M , Morchón R , González-Miguel J , Mellado I , Carretón E , Montoya-Alonso JA , 2012. Human and animal dirofilariasis: The emergence of a zoonotic mosaic. Clin Microbiol Rev 25: 507–544.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 281 | 281 | 102 |
Full Text Views | 65 | 65 | 39 |
PDF Downloads | 84 | 84 | 37 |