Dodd PJ , Osman M , Cresswell FV , Stadelman AM , Lan NH , Thuong NTT , Muzyamba M , Glaser L , Dlamini SS , Seddon JA , 2021. The global burden of tuberculous meningitis in adults: A modelling study. PLOS Glob Public Health 1: e0000069.
Wilkinson RJ et al.; Tuberculous Meningitis International Research Consortium , 2017. Tuberculous meningitis. Nat Rev Neurol 13: 581–598.
Heemskerk AD et al., 2018. Improving the microbiological diagnosis of tuberculous meningitis: A prospective, international, multicentre comparison of conventional and modified Ziehl–Neelsen stain, GeneXpert, and culture of cerebrospinal fluid. J Infect 77: 509–515.
Bahr NC et al.; ASTRO-CM Trial Team , 2018. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: A prospective cohort study. Lancet Infect Dis 18: 68–75.
Cresswell FV et al.; ASTRO-CM team , 2020. Xpert MTB/RIF Ultra for the diagnosis of HIV-associated tuberculous meningitis: A prospective validation study. Lancet Infect Dis 20: 308–317.
Boyles TH , Thwaites GE , 2015. Appropriate use of the Xpert (R) MTB/RIF assay in suspected tuberculous meningitis. Int J Tuberc Lung Dis 19: 276–277.
Riley RD , Ensor J , Snell KI , Debray TPA , Altman DG , Moons GMM , Colls GS , 2016. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ 353: i3140.
Debray TP , Damen JAA , Snell KI , Ensor J , Hooft L , Reitsma JB , Riley RD , Moons GMM , 2017. A guide to systematic review and meta-analysis of prediction model performance. BMJ 356: i6460.
Ahmed I , Debray TP , Moons KG , Riley RD , 2014. Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Med Res Methodol 14: 3.
Debray TP , Moons KG , Ahmed I , Koffijberg H , Riley RD , 2013. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Stat Med 32: 3158–3180.
Jolani S , Debray TP , Koffijberg H , van Buuren S , Moons KG , 2015. Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE. Stat Med 34: 1841–1863.
Riley RD , Lambert PC , Abo-Zaid G , 2010. Meta-analysis of individual participant data: Rationale, conduct, and reporting. BMJ 340: c221.
Stewart LA , Clarke M , Rovers M , Riley RD , Simmonds M , Stewart G , Tierney JF ; PRISMA-IPD Development Group , 2015. Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: The PRISMA-IPD statement. JAMA 313: 1657–1665.
Boyles T , Stadelman A , Ellis JP , Crewsswell FV , Lutje V , Wasserman S , Tiffin N , Wilkinson R , 2019. The diagnosis of tuberculous meningitis in adults and adolescents: Protocol for a systematic review and individual patient data meta-analysis to inform a multivariable prediction model. Wellcome Open Res 4: 19.
World Health Organization , 2019. Global Tuberculosis Report 2019. Geneva, Switzerland: WHO.
Marais S , Thwaites G , Schoeman JG , Török ME , Misra UK , Prasad K , Donald PR , Wilkinson RJ , Marais B , 2010. Tuberculous meningitis: A uniform case definition for use in clinical research. Lancet Infect Dis 10: 803–812.
Steyerberg EW , 2009. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York, NY: Springer Science+Business Media.
Brier GW , 1950. Verification of forecasts expressed in terms of probability. Mon Weather Rev 78: 1–3.
Collins GS , Reitsma JB , Altman DG , Moons KG , 2015. Transparent reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med 162: 735–736.
Anselmo LMP , Feliciano C , Mauad F , Passeri do Nascimento M , Candido Pocente R , Silva JM , Bollela VR , 2017. A predictive score followed by nucleic acid amplification for adult tuberculous meningitis diagnosis in southern Brazil. J Neurol Sci 379: 253–258.
Gualberto FAS , Gonçalves MG , Fukasaw LO , Ramos Dos Santos AM , Sacchi CT , Harrison LH , Boulware DR , Vidal JE , 2017. Performance of nested RT-PCR on CSF for tuberculous meningitis diagnosis in HIV-infected patients. Int J Tuberc Lung Dis 21: 1139–1144.
Azevedo RG , Dinallo FS , de Laurentis LS , Boulware DR , Vidal JE , 2018. Xpert MTB/RIF((R)) assay for the diagnosis of HIV-related tuberculous meningitis in Sao Paulo, Brazil. Int J Tuberc Lung Dis 22: 706–707.
de Almeida SM , Borges CM , Santana LB , Golin G , Correa L , Kussen GB , Nogueira K , 2019. Validation of Mycobacterium tuberculosis real-time polymerase chain reaction for diagnosis of tuberculous meningitis using cerebrospinal fluid samples: A pilot study. Clin Chem Lab Med 57: 556–564.
Nhu NTQ et al., 2014. Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J Clin Microbiol 52: 226–233.
Donovan J et al., 2020. Xpert MTB/RIF Ultra versus Xpert MTB/RIF for the diagnosis of tuberculous meningitis: A prospective, randomised, diagnostic accuracy study. Lancet Infect Dis 20: 299–307.
Botha H , Ackerman C , Candy S , Carr JA , Griffith-Richards S , Bateman KJ , 2012. Reliability and diagnostic performance of CT imaging criteria in the diagnosis of tuberculous meningitis. PLoS One 7: e38982.
Mitchell HK et al., 2019. Causes of pediatric meningitis in Botswana: Results from a 16-year national meningitis audit. Pediatr Infect Dis J 38: 906–911.
van Laarhoven A et al., 2017. Clinical parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality among 608 patients with tuberculous meningitis in Indonesia. J Infect Dis 215: 1029–1039.
Dendane T , Madani N , Zekraoui A , Belayachi J , Abidi K , Zeggwagh AA , Abouqal R , 2013. A simple diagnostic aid for tuberculous meningitis in adults in Morocco by use of clinical and laboratory features. Int J Infect Dis 17: e461–e465.
Metcalf T et al., 2018. Evaluation of the GeneXpert MTB/RIF in patients with presumptive tuberculous meningitis. PLoS One 13: e0198695.
Jipa R , Olaru ID , Manea E , Merisor S , Hristea A , 2017. Rapid clinical score for the diagnosis of tuberculous meningitis: A retrospective cohort study. Ann Indian Acad Neurol 20: 363–366.
Sunbul M , Atilla A , Esen S , Eroglu C , Leblebicioglu H , 2005. Thwaites’ diagnostic scoring and the prediction of tuberculous meningitis. Med Princ Pract 14: 151–154.
Vibha D , Bhatia R , Prasad K , Srivastava MVP , Tripathi M , Kumar G , Singh MB , 2012. Validation of diagnostic algorithm to differentiate between tuberculous meningitis and acute bacterial meningitis. Clin Neurol Neurosurg 114: 639–644.
Zhang YL , Lin S , Shao LY , Zhang WH , Weng XH , 2014. Validation of Thwaites’ diagnostic scoring system for the differential diagnosis of tuberculous meningitis and bacterial meningitis. Jpn J Infect Dis 67: 428–431.
Saavedra JS et al., 2016. Validation of Thwaites Index for diagnosing tuberculous meningitis in a Colombian population. J Neurol Sci 370: 112–118.
Checkley AM , Njalale Y , Scarborough M , Zjilstra EE , 2008. Sensitivity and specificity of an index for the diagnosis of TB meningitis in patients in an urban teaching hospital in Malawi. Trop Med Int Health 13: 1042–1046.
Christodoulou E , Ma J , Collins GS , Steyerberg EW , Verbakel JY , Van Calster B , 2019. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 110: 12–22.
Pauker SG , Kassirer JP , 1980. The threshold approach to clinical decision making. N Engl J Med 302: 1109–1117.
Stadelman AM et al., 2020. Treatment outcomes in adult tuberculous meningitis: A systematic review and meta-analysis. Open Forum Infect Dis 7: ofaa257.
Boulware DR , Meya DB , 2014. Antiretroviral therapy after cryptococcal meningitis. Letter. N Engl J Med 371: 1166–1167.
Rhein J et al., 2019. Adjunctive sertraline for HIV-associated cryptococcal meningitis: A randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect Dis 19: 843–851.
Chaidir L , Annisa J , Dian S , Parwati I , Alisjahbana A , Purnama F , van der Zanden A , Ganiem AR , van Cevel R , 2018. Microbiological diagnosis of adult tuberculous meningitis in a ten-year cohort in Indonesia. Diagn Microbiol Infect Dis 91: 42–46.
Bahr NC , Tugume L , Rajasingham R , Kiggundu R , Williams DA , Morawski B , Alland D , Meya DB , Rhein J , Boulware DR , 2015. Improved diagnostic sensitivity for tuberculous meningitis with Xpert((R)) MTB/RIF of centrifuged CSF. Int J Tuberc Lung Dis 19: 1209–1215.
Siebert U , 2003. When should decision-analytic modeling be used in the economic evaluation of health care? Eur J Health Econ 4: 143–150.
Marais BJ et al., 2017. Standardized methods for enhanced quality and comparability of tuberculous meningitis studies. Clin Infect Dis 64: 501–509.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 3394 | 3394 | 565 |
Full Text Views | 87 | 87 | 26 |
PDF Downloads | 103 | 103 | 38 |
No accurate and rapid diagnostic test exists for tuberculous meningitis (TBM), leading to delayed diagnosis. We leveraged data from multiple studies to improve the predictive performance of diagnostic models across different populations, settings, and subgroups to develop a new predictive tool for TBM diagnosis. We conducted a systematic review to analyze eligible datasets with individual-level participant data (IPD). We imputed missing data and explored three approaches: stepwise logistic regression, classification and regression tree (CART), and random forest regression. We evaluated performance using calibration plots and C-statistics via internal–external cross-validation. We included 3,761 individual participants from 14 studies and nine countries. A total of 1,240 (33%) participants had “definite” (30%) or “probable” (3%) TBM by case definition. Important predictive variables included cerebrospinal fluid (CSF) glucose, blood glucose, CSF white cell count, CSF differential, cryptococcal antigen, HIV status, and fever presence. Internal validation showed that performance varied considerably between IPD datasets with C-statistic values between 0.60 and 0.89. In external validation, CART performed the worst (C = 0.82), and logistic regression and random forest had the same accuracy (C = 0.91). We developed a mobile app for TBM clinical prediction that accounted for heterogeneity and improved diagnostic performance (https://tbmcalc.github.io/tbmcalc). Further external validation is needed.
Financial support:
Current contact information: Anna M. Stadelman-Behar, School of Public Health, University of Minnesota, Minneapolis, MN, E-mail: stad0110@umn.edu. Nicki Tiffin, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa, and Wellcome CIDRI–Africa, University of Cape Town, Cape Town, South Africa, E-mail: ntiffin@uwc.ac.za. Jayne Ellis MRC/UVRI-LSHTM Uganda Research Unit, Entebbe, Uganda, E-mail: j.ellis@doctors.org.uk. Fiona V. Creswell, MRC/UVRI-LSHTM Uganda Research Unit, Entebbe, Uganda, and Global Health and Infection, Brighton and Sussex Medical School, East Sussex, United Kingdom, E-mail: fiona.cresswell@lshtm.ac.uk. Kenneth Ssebambulidde, Infectious Diseases Institute, Makerere University, Kampala, Uganda, E-mail: kssebambulidde@gmail.com. Edwin Nuwagira, Department of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda, E-mail: kanyama83@gmail.com. Lauren Richards, Division of Infectious Diseases, Department of Internal Medicine, Helen Joseph Hospital, University of Witwatersrand, Johannesburg, South Africa, E-mail: lolrichards@gmail.com. Vittoria Lutje, Cochrane Infectious Diseases Group, London, United Kingdom, E-mail: vittoria.lutje@lstmed.ac.uk. Adriana Hristea and Raluca Elena Jipa, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania, E-mails: adriana_hristea@yahoo.com and ralucajipa@yahoo.com. José E. Vidal, Departmento de Neurologia, Instituto de Infectologia Emílio, São Paulo, Brazil, Divisão de Clínica de Moléstias Infecciosas e Parasitárias, Hospital das Clınicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil, and Laboratório de Investigação Médica, Unidade 49, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil, E-mail: josevibe@gmail.com. Renata G. S. Azevedo, Departmento de Infectologia, Instituto de Infectologia Emílio, São Paulo, Brazil, E-mail: rguise@hotmail.com. Sérgio Monteiro de Almeida, Gislene Botão Kussen, and Keite Nogueira, Hospital de Clinicas, Universidade Federal do Paraná, Curitiba, Brazil, E-mails: sergio.ma@ufpr.br, gislene.kussen@ufpr.br, and keitenogueira@gmail.com. Felipe Augusto Souza Gualberto, Center for Reference and Training in STD/AIDS CRT DST/AIDS, São Paulo, Brazil, E-mail: felipegualberto@gmail.com. Tatiana Metcalf, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, and Northern Pacific Fogarty Global Health Fellowship Program, National Institutes of Health, University of Washington, Seattle, Washington, E-mail: tatianametcalfg@gmail.com. Anna Dorothee Heemskerk, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centre, Amsterdam, The Netherlands, E-mail: a.heemskerk@vumc.nl. Tarek Dendane, Abidi Khalid, and Amine Ali Zeggwagh, Medical Intensive Care Unit, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco, E-mails: tdendane@hotmail.com, abidikhalid6@gmail.com, and aazeggwagh@gmail.com. Kathleen Bateman, Neurology Division, Department of Medicine Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa, E-mail: kathleen.bateman@uct.ac.za. Uwe Siebert, Departments of Epidemiology and Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital Harvard Medical School, Boston, MA, and Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—University for Health Sciences, Medical Informatics and Technology, Boston, MA, E-mail: uwe.siebert@umit.at. Ursula Rochau, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—University for Health Sciences, Medical Informatics and Technology, Hall I.T., Tirol, Austria, E-mail: ursula.rochau@umit.at. Arjan van Laarhoven and Reinout van Crevel, Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, E-mails: arjan.vanlaarhoven@radboudumc.nl and reinout.vancrevel@radboudumc.nl. Ahmad Rizal Ganiem and Sofiati Dian, Department of Neurology Hasan Sadikin Hospital and TB/HIV Research Center Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, E-mails: rizalbdg@gmail.com and Sofiati.Dian@radboudumc.nl or sofiatidian@gmail.com. Joseph Jarvis, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana, and Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom, E-mail: drjoejarvis@gmail.com. Joseph Donovan, Thuong Nguyen Thuy Thuong, and Guy E. Thwaites, Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam, and Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, E-mails: joseph.donovan@lshtm.ac.uk, thuongntt@oucru.org, and gthwaites@oucru.org. Nathan C. Bahr, Division of Infectious Diseases, Department of Medicine, University of Kansas Medical Center, Kansas City, KS, E-mail: nate.bahr@gmail.com. David B. Meya, Infectious Diseases Institute and Department of Medicine, Faculty of Health Sciences, Makerere University, Kampala, Uganda, and Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Kampala, Uganda, E-mail: david.meya@gmail.com. David R. Boulware, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, E-mail: boulw001@umn.edu. Tom H. Boyles, Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom, and Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa, E-mail: drtomboyles@gmail.com.
Dodd PJ , Osman M , Cresswell FV , Stadelman AM , Lan NH , Thuong NTT , Muzyamba M , Glaser L , Dlamini SS , Seddon JA , 2021. The global burden of tuberculous meningitis in adults: A modelling study. PLOS Glob Public Health 1: e0000069.
Wilkinson RJ et al.; Tuberculous Meningitis International Research Consortium , 2017. Tuberculous meningitis. Nat Rev Neurol 13: 581–598.
Heemskerk AD et al., 2018. Improving the microbiological diagnosis of tuberculous meningitis: A prospective, international, multicentre comparison of conventional and modified Ziehl–Neelsen stain, GeneXpert, and culture of cerebrospinal fluid. J Infect 77: 509–515.
Bahr NC et al.; ASTRO-CM Trial Team , 2018. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: A prospective cohort study. Lancet Infect Dis 18: 68–75.
Cresswell FV et al.; ASTRO-CM team , 2020. Xpert MTB/RIF Ultra for the diagnosis of HIV-associated tuberculous meningitis: A prospective validation study. Lancet Infect Dis 20: 308–317.
Boyles TH , Thwaites GE , 2015. Appropriate use of the Xpert (R) MTB/RIF assay in suspected tuberculous meningitis. Int J Tuberc Lung Dis 19: 276–277.
Riley RD , Ensor J , Snell KI , Debray TPA , Altman DG , Moons GMM , Colls GS , 2016. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ 353: i3140.
Debray TP , Damen JAA , Snell KI , Ensor J , Hooft L , Reitsma JB , Riley RD , Moons GMM , 2017. A guide to systematic review and meta-analysis of prediction model performance. BMJ 356: i6460.
Ahmed I , Debray TP , Moons KG , Riley RD , 2014. Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Med Res Methodol 14: 3.
Debray TP , Moons KG , Ahmed I , Koffijberg H , Riley RD , 2013. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Stat Med 32: 3158–3180.
Jolani S , Debray TP , Koffijberg H , van Buuren S , Moons KG , 2015. Imputation of systematically missing predictors in an individual participant data meta-analysis: A generalized approach using MICE. Stat Med 34: 1841–1863.
Riley RD , Lambert PC , Abo-Zaid G , 2010. Meta-analysis of individual participant data: Rationale, conduct, and reporting. BMJ 340: c221.
Stewart LA , Clarke M , Rovers M , Riley RD , Simmonds M , Stewart G , Tierney JF ; PRISMA-IPD Development Group , 2015. Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: The PRISMA-IPD statement. JAMA 313: 1657–1665.
Boyles T , Stadelman A , Ellis JP , Crewsswell FV , Lutje V , Wasserman S , Tiffin N , Wilkinson R , 2019. The diagnosis of tuberculous meningitis in adults and adolescents: Protocol for a systematic review and individual patient data meta-analysis to inform a multivariable prediction model. Wellcome Open Res 4: 19.
World Health Organization , 2019. Global Tuberculosis Report 2019. Geneva, Switzerland: WHO.
Marais S , Thwaites G , Schoeman JG , Török ME , Misra UK , Prasad K , Donald PR , Wilkinson RJ , Marais B , 2010. Tuberculous meningitis: A uniform case definition for use in clinical research. Lancet Infect Dis 10: 803–812.
Steyerberg EW , 2009. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York, NY: Springer Science+Business Media.
Brier GW , 1950. Verification of forecasts expressed in terms of probability. Mon Weather Rev 78: 1–3.
Collins GS , Reitsma JB , Altman DG , Moons KG , 2015. Transparent reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med 162: 735–736.
Anselmo LMP , Feliciano C , Mauad F , Passeri do Nascimento M , Candido Pocente R , Silva JM , Bollela VR , 2017. A predictive score followed by nucleic acid amplification for adult tuberculous meningitis diagnosis in southern Brazil. J Neurol Sci 379: 253–258.
Gualberto FAS , Gonçalves MG , Fukasaw LO , Ramos Dos Santos AM , Sacchi CT , Harrison LH , Boulware DR , Vidal JE , 2017. Performance of nested RT-PCR on CSF for tuberculous meningitis diagnosis in HIV-infected patients. Int J Tuberc Lung Dis 21: 1139–1144.
Azevedo RG , Dinallo FS , de Laurentis LS , Boulware DR , Vidal JE , 2018. Xpert MTB/RIF((R)) assay for the diagnosis of HIV-related tuberculous meningitis in Sao Paulo, Brazil. Int J Tuberc Lung Dis 22: 706–707.
de Almeida SM , Borges CM , Santana LB , Golin G , Correa L , Kussen GB , Nogueira K , 2019. Validation of Mycobacterium tuberculosis real-time polymerase chain reaction for diagnosis of tuberculous meningitis using cerebrospinal fluid samples: A pilot study. Clin Chem Lab Med 57: 556–564.
Nhu NTQ et al., 2014. Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J Clin Microbiol 52: 226–233.
Donovan J et al., 2020. Xpert MTB/RIF Ultra versus Xpert MTB/RIF for the diagnosis of tuberculous meningitis: A prospective, randomised, diagnostic accuracy study. Lancet Infect Dis 20: 299–307.
Botha H , Ackerman C , Candy S , Carr JA , Griffith-Richards S , Bateman KJ , 2012. Reliability and diagnostic performance of CT imaging criteria in the diagnosis of tuberculous meningitis. PLoS One 7: e38982.
Mitchell HK et al., 2019. Causes of pediatric meningitis in Botswana: Results from a 16-year national meningitis audit. Pediatr Infect Dis J 38: 906–911.
van Laarhoven A et al., 2017. Clinical parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality among 608 patients with tuberculous meningitis in Indonesia. J Infect Dis 215: 1029–1039.
Dendane T , Madani N , Zekraoui A , Belayachi J , Abidi K , Zeggwagh AA , Abouqal R , 2013. A simple diagnostic aid for tuberculous meningitis in adults in Morocco by use of clinical and laboratory features. Int J Infect Dis 17: e461–e465.
Metcalf T et al., 2018. Evaluation of the GeneXpert MTB/RIF in patients with presumptive tuberculous meningitis. PLoS One 13: e0198695.
Jipa R , Olaru ID , Manea E , Merisor S , Hristea A , 2017. Rapid clinical score for the diagnosis of tuberculous meningitis: A retrospective cohort study. Ann Indian Acad Neurol 20: 363–366.
Sunbul M , Atilla A , Esen S , Eroglu C , Leblebicioglu H , 2005. Thwaites’ diagnostic scoring and the prediction of tuberculous meningitis. Med Princ Pract 14: 151–154.
Vibha D , Bhatia R , Prasad K , Srivastava MVP , Tripathi M , Kumar G , Singh MB , 2012. Validation of diagnostic algorithm to differentiate between tuberculous meningitis and acute bacterial meningitis. Clin Neurol Neurosurg 114: 639–644.
Zhang YL , Lin S , Shao LY , Zhang WH , Weng XH , 2014. Validation of Thwaites’ diagnostic scoring system for the differential diagnosis of tuberculous meningitis and bacterial meningitis. Jpn J Infect Dis 67: 428–431.
Saavedra JS et al., 2016. Validation of Thwaites Index for diagnosing tuberculous meningitis in a Colombian population. J Neurol Sci 370: 112–118.
Checkley AM , Njalale Y , Scarborough M , Zjilstra EE , 2008. Sensitivity and specificity of an index for the diagnosis of TB meningitis in patients in an urban teaching hospital in Malawi. Trop Med Int Health 13: 1042–1046.
Christodoulou E , Ma J , Collins GS , Steyerberg EW , Verbakel JY , Van Calster B , 2019. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 110: 12–22.
Pauker SG , Kassirer JP , 1980. The threshold approach to clinical decision making. N Engl J Med 302: 1109–1117.
Stadelman AM et al., 2020. Treatment outcomes in adult tuberculous meningitis: A systematic review and meta-analysis. Open Forum Infect Dis 7: ofaa257.
Boulware DR , Meya DB , 2014. Antiretroviral therapy after cryptococcal meningitis. Letter. N Engl J Med 371: 1166–1167.
Rhein J et al., 2019. Adjunctive sertraline for HIV-associated cryptococcal meningitis: A randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect Dis 19: 843–851.
Chaidir L , Annisa J , Dian S , Parwati I , Alisjahbana A , Purnama F , van der Zanden A , Ganiem AR , van Cevel R , 2018. Microbiological diagnosis of adult tuberculous meningitis in a ten-year cohort in Indonesia. Diagn Microbiol Infect Dis 91: 42–46.
Bahr NC , Tugume L , Rajasingham R , Kiggundu R , Williams DA , Morawski B , Alland D , Meya DB , Rhein J , Boulware DR , 2015. Improved diagnostic sensitivity for tuberculous meningitis with Xpert((R)) MTB/RIF of centrifuged CSF. Int J Tuberc Lung Dis 19: 1209–1215.
Siebert U , 2003. When should decision-analytic modeling be used in the economic evaluation of health care? Eur J Health Econ 4: 143–150.
Marais BJ et al., 2017. Standardized methods for enhanced quality and comparability of tuberculous meningitis studies. Clin Infect Dis 64: 501–509.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 3394 | 3394 | 565 |
Full Text Views | 87 | 87 | 26 |
PDF Downloads | 103 | 103 | 38 |