Bañuls A-L , Sanou A , Ang NTV , Godreuil S , 2015. Mycobacterium tuberculosis: Ecology and evolution of a human bacterium. J Med Microbiol 64: 1261–1269.
Joseph SK , Lindo J , 2022. The evolutionary history of infectious disease in the ancient Americas and the pathogenic consequences of European contact. Am J Biol Anthropol 182: 532–541.
Hershkovitz I et al., 2015. Tuberculosis origin: The Neolithic scenario. Tuberculosis (Edinb) 95: S122–S126.
Barbier M , Wirth T , 2016. The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. Available at: https://pubmed.ncbi.nlm.nih.gov/27726798/. Accessed December 15, 2023.
World Health Organization , 2022. Global Tuberculosis Report 2022. Geneva, Switzerland: WHO.
World Health Organization , 2023. Global Tuberculosis Report 2023. Geneva, Switzerland: WHO.
Trauer JM et al., 2019. The importance of heterogeneity to the epidemiology of tuberculosis. Clin Infect Dis 69: 159–166.
Nelson EA , Buikstra JE , Herbig A , Tung TA , Bos KI , 2020. Advances in the molecular detection of tuberculosis in pre-contact Andean South America. Int J Paleopathol 29: 128–140.
Zimmer AJ , Klinton JS , Oga-Omenka C , Heitkamp P , Nyirenda CN , Furin J , Pai M , 1978. Tuberculosis in times of COVID-19. J Epidemiol Community Health 2022: 310–316.
Pan American Health Organization , 2023. Tuberculosis in the Americas. Regional Report 2021. Available at: https://www.paho.org/en/documents/tuberculosis-americas-regional-report-2021. Accessed June 6, 2024.
Mabhula A , Singh V , 2019. Drug-resistance Mycobacterium tuberculosis: Where we stand. MedChemComm 10: 1342–1360.
World Health Organization , 2017. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, 2017 Update. Geneva, Switzerland: WHO.
World Health Organization , 2019. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment Update. Geneva, Switzerland: WHO.
Dheda K , Theron G , Calligaro G , Limberis J , Davids M , Esmail A , Dawson R , Sharma SK & Mohan A Textbook of Tuberculosis and Nontuberculous Mycobacterial Diseases. New Delhi, India: Jaypee Brothers Medical Publishers, 579–608.
Paramasivan C , Balasangameshwara V , Sharma SK & Mohan A Textbook of Tuberculosis and Nontuberculous Mycobacterial Diseases. New Delhi, India: Jaypee Brothers Medical Publishers, 609–620.
World Health Organization , 2022. Tuberculosis Profile: Peru. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22PE%22&lan=%22EN%22. Accessed August 1, 2023.
World Health Organization , 2022. Tuberculosis Profile: Haiti. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22GT%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Dominican Republic. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22DO%22&lan=%22EN%22. 2022. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Bolivia (Plurinational State of). Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22BO%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Panama. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22PA%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Ecuador. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22EC%22. Accessed August 14, 2023.
World Health Organization , 2022. Tuberculosis Profile: Colombia. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22CO%22. Accessed August 14, 2023.
Brites D , Gagneux S & Gagneux S Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Cham, Switzerland: Springer International Publishing, 1–26.
Rodríguez-Castillo JG , Rodríguez-Llerena C , Argoty-Chamorro L , Guerra J , Couvin D , Rastogi N , Murcia MI , 2020. Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia. Tuberculosis (Edinb) 125: 102011.
Stucki D et al., 2016. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48: 1535–1543.
Ngabonziza JCS et al., 2020. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun 11: 2917.
Woodman M , Haeusler I , Grandjean L , 2019. Tuberculosis genetic epidemiology: A Latin American perspective. Genes (Basel) 10: 53.
Lazzarini LCO et al., 2007. Discovery of a novel Mycobacterium tuberculosis lineage that is a major cause of tuberculosis in Rio de Janeiro, Brazil. J Clin Microbiol 45: 3891–3902.
Merker M , Kohl TA , Niemann S , Supply P & Gagneux S Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Cham, Switzerland: Springer International Publishing, 43–78.
Merker M et al., 2015. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47: 242–249.
Donoghue HD , 2019. Tuberculosis and leprosy associated with historical human population movements in Europe and beyond—An overview based on mycobacterial ancient DNA. Ann Hum Biol 46: 120–128.
Castillos de Ibrahim das Neves Y , Reis AJ , Maio NX , Vianna J , Perdigão J , Bastos Ramis I , Almeida da Silva PE , Von Groll A , 2023. Genotyping methods and their contributions to the study of tuberculosis dynamic in Latin America. J Infect Dev Ctries 17: 1373–1386.
Wiens KE et al., 2018. Global variation in bacterial strains that cause tuberculosis disease: A systematic review and meta-analysis. BMC Med 16: 196.
Monteserin J et al., 2018. Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina. Infect Genet Evol 62: 1–7.
Acosta F et al., 2021. Probable long‐term prevalence for a predominant Mycobacterium tuberculosis clone of a Beijing genotype in Colon, Panama. Transbound Emerg Dis 68: 2229–2238.
Alame Emane AK , Guo X , Takiff HE , Liu S , 2021. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 129: 102091.
Alame Emane AK , Guo X , Takiff HE , Liu S , 2021. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? Tuberculosis (Edinb) 129: 102092.
Ektefaie Y , Dixit A , Freschi L , Farhat MR , 2021. Globally diverse Mycobacterium tuberculosis resistance acquisition: A retrospective geographical and temporal analysis of whole genome sequences. Lancet Microbe 2: e96–e104.
Nimmo C , Millard J , Faulkner V , Monteserin J , Pugh H , Johnson EO , 2022. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 12: 954074.
Cerezo-Cortés M , Rodríguez-Castillo JG , Hernández-Pando R , Murcia MI , 2019. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 113: 336–351.
Zhu C , Yang T , Yin J , Jiang H , Takiff HE , Gao Q , Liu Q , Li W , 2023. The global success of Mycobacterium tuberculosis modern Beijing family is driven by a few recently emerged strains. Microbiol Spectr 11: e0333922.
Huang C-C et al., 2020. Mycobacterium tuberculosis Beijing lineage and risk for tuberculosis in child household contacts, Peru. Emerg Infect Dis 26: 568–578.
Iwamoto T et al., 2012. Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLoS One 7: e49651.
Nieto Ramirez LM , Ferro BE , Diaz G , Anthony RM , de Beer J , van Soolingen D , 2020. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from southwestern Colombia. PLoS One 15: 0224908.
Skhairia MA , Dekhil N , Mhenni B , Ben Fradj S , Mardassi H , 2021. Successful expansion of Mycobacterium tuberculosis Latin American and Mediterranean sublineage (L4.3/LAM) in Tunisia mainly driven by a single, long-established clonal complex. Int J Infect Dis 103: 220–225.
Brynildsrud OB et al., 2018. Global expansion Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci Adv 4: eaat5869.
Huber FD et al., 2014. Insights into the population structure of Mycobacterium tuberculosis using spoligotyping and RDRio in a southeastern Brazilian prison unit. Infect Genet Evol 26: 194–202.
De Almeida IN , Vasconcellos SEG , de Assis Figueredo LJ , Dantas NGT , Augusto CJ , Hadaad JPA , Suffys PN , da Silva Carvalho W , de Miranda SS , 2019. Frequency of the Mycobacterium tuberculosis RDRio genotype and its association with multidrug-resistant tuberculosis. BMC Infect Dis 19: 556.
Méndez MV , Abadía E , Sequera M , de Waard JH , Takiff HE , 2020. Most LAM Mycobacterium tuberculosis strains in Venezuela, but not SIT605, belong to the RDRio subfamily. Infect Genet Evol 84: 104380.
Mokrousov I et al., 2016. Latin-American–Mediterranean lineage of Mycobacterium tuberculosis: Human traces across pathogen’s phylogeography. Mol Phylogenet Evol 99: 133–143.
Cerezo I , Jiménez Y , Hernandez J , Zozio T , Murcia MI , Rastogi N , 2012. A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol 12: 657–663.
Puerto G , Erazo L , Wintaco M , Castro C , Ribón W , Inírida Guerrero M , 2015. Mycobacterium tuberculosis genotypes determined by spoligotyping to be circulating in Colombia between 1999 and 2012 and their possible associations with transmission and susceptibility to first-line drugs. PLoS One 10: e0124308.
Taype CA , Agapito JC , Accinelli RA , Espinoza JR , Godreuil S , Goodman SJ , Bañuls AL , Shaw MA , 2012. Genetic diversity, population structure and drug resistance of Mycobacterium tuberculosis in Peru. Infect Genet Evol 12: 577–585.
Vinhas SA et al., 2013. Mycobacterium tuberculosis DNA fingerprint clusters and its relationship with RDRio genotype in Brazil. Tuberculosis (Edinb) 93: 207–212.
Coscolla M , Gagneux S , 2010. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7: e43–e59.
David S , Duarte EL , Leite CQ , Ribeiro JN , Maio JN , Paixão E , Portugal C , Sancho L , Germano de Sousa J , 2012. Implication of the RDRio Mycobacterium tuberculosis sublineage in multidrug resistant tuberculosis in Portugal. Infect Genet Evol 12: 1362–1367.
Skiba Y et al., 2019. Mycobacterium tuberculosis RD-Rio strain in Kazakhstan. Emerg Infect Dis 25: 604–606.
Lazzarini LCO et al., 2008. RD Rio Mycobacterium tuberculosis infection is associated with a higher frequency of cavitary pulmonary disease. J Clin Microbiol 46: 2175–2183.
Von Groll A et al., 2010. Fitness study of the RD Rio lineage and Latin American Mediterranean family of Mycobacterium tuberculosis in the city of Rio Grande, Brazil. FEMS Immunol Med Microbiol 58: 119–127.
Arenas-Suarez NE , Cuervo LI , Avila EF , Duitama-Leal A , Pineda-Peña AC , 2021. The impact of immigration on tuberculosis and HIV burden between Colombia and Venezuela and across frontier regions. Cad Saude Publica 37: e00078820.
Woodman M , Haeusler I , Grandjean L , 2019. Tuberculosis genetic epidemiology: A Latin American perspective. Genes (Basel) 10: 53.
Ranzani OT , Pescarini JM , Martinez L , Garcia-Basteiro AL , 2021. Increasing tuberculosis burden in Latin America: An alarming trend for global control efforts. BMJ Glob Health 6: e005639.
World Health Organization , 2022. Tuberculosis Profile: WHO/PAHO Region of the Americas. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&group_code=%22AMR%22&entity_type=%22group%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Argentina. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22AR%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Brazil. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22BR%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Chile. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22CL%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Costa Rica. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22CR%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Cuba. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22CU%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Dominica. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22DM%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: El Salvador. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22SV%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Guatemala. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22GT%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Guyana. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22GY%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Honduras. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22HN%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Mexico. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22MX%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Nicaragua. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22NI%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Paraguay. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22PY%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Uruguay. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22UY%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Venezuela (Bolivarian Republic of). Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22VE%22&lan=%22EN%22. Accessed January 27, 2024.
Vasconcellos SEG et al., 2014. Strain classification of Mycobacterium tuberculosis isolates in Brazil based on genotypes obtained by spoligotyping, mycobacterial interspersed repetitive unit typing and the presence of large sequence and single nucleotide polymorphism. PLoS One 9: e107747.
Gibson AL et al., 2008. Application of sensitive and specific molecular methods to uncover global dissemination of the major RDRio sublineage of the Latin American-Mediterranean Mycobacterium tuberculosis spoligotype family. J Clin Microbiol 46: 1259–1267.
Dalla Costa ER et al., 2013. Mycobacterium tuberculosis of the RD Rio genotype is the predominant cause of tuberculosis and associated with multidrug resistance in Porto Alegre city, south Brazil. J Clin Microbiol 51: 1071–1077.
Soares RO , Bidart de Macedo M , von Groll A , Almeida da Silva PE , 2013. Mycobacterium tuberculosis belonging to family LAM and sublineage RDRio: Common strains in southern Brazil for over 10 years. Braz J Microbiol 44: 1251–1255.
Moraes EB et al., 2017. Tuberculosis associated factors caused by Mycobacterium tuberculosis of the RDRio genotype. Mem Inst Oswaldo Cruz 112: 182–187.
Díaz Acosta CC et al., 2019. Exploring the ‘Latin American Mediterranean’ family and the RDRio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiol 19: 131.
Bocanegra-García V , Cortez-de-la-Fuente LJ , Nakamura-López Y , González GM , Rivera G , Palma-Nicolás JP , 2021. RDRio Mycobacterium tuberculosis strains associated with isoniazid resistance in northern Mexico. Enferm Infecc Microbiol Clin 39: 399–402.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 624 | 624 | 148 |
Full Text Views | 34 | 34 | 7 |
PDF Downloads | 36 | 36 | 9 |
Latin American region is a high-burden setting for tuberculosis where multidrug-resistant tuberculosis (MDR-TB) is among the main challenge to move forward the End TB Strategy goals. It has been shown that MDR-TB is associated to certain Mycobacterium tuberculosis (MTB) lineages like L2-Beijing sublineage or L4-LAM. Although L2-Beijing is present in South America, the L4 lineage is the most prevalent with values ranging from 75% to 99% depending on the country. Within L4, Latin American–Mediterranean (LAM) family is the most prevalent. Moreover, within LAM, RDRio subfamily is present in high prevalence in several countries in South America like Venezuela or Brazil. RDRio has been associated to MDR-TB in several studies in Brazil but more epidemiological information is needed for South America. Here we discuss the problem of MDR-TB in Latin America and the potential threat that RDRio could represent. At this time, more molecular epidemiology studies are necessary to improve TB surveillance programs in Latin America by tracking MTB strains potentially responsible for MDR-TB spread.
Financial support: This research was funded by
Current contact information: Bernardo Castro-Rodríguez, Cristina Cazar-Ramos, and Miguel Angel García-Bereguiain, One Health Research Group, Universidad de las Américas, Quito, Ecuador, E-mails: bernardo.castro@udla.edu.ec, cristina.cazar@udla.edu.ec, and magbereguiain@gmail.com. Greta Franco-Sotomayor, Instituto Nacional de Salud Pública e Investigación, Guayaquil, Ecuador, and Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador, E-mail: gfranco@inspi.gob.ec. Greta Ester Cardenas-Franco, Instituto Nacional de Salud Pública e Investigación, Guayaquil, Ecuador, E-mail: greta_card2210@outlook.es. Solon Alberto Orlando, Instituto Nacional de Salud Pública e Investigación, Guayaquil, Ecuador, and Universidad Espíritu Santo, Guayaquil, Ecuador, E-mail: aorlando@inspi.gob.ec.
Bañuls A-L , Sanou A , Ang NTV , Godreuil S , 2015. Mycobacterium tuberculosis: Ecology and evolution of a human bacterium. J Med Microbiol 64: 1261–1269.
Joseph SK , Lindo J , 2022. The evolutionary history of infectious disease in the ancient Americas and the pathogenic consequences of European contact. Am J Biol Anthropol 182: 532–541.
Hershkovitz I et al., 2015. Tuberculosis origin: The Neolithic scenario. Tuberculosis (Edinb) 95: S122–S126.
Barbier M , Wirth T , 2016. The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. Available at: https://pubmed.ncbi.nlm.nih.gov/27726798/. Accessed December 15, 2023.
World Health Organization , 2022. Global Tuberculosis Report 2022. Geneva, Switzerland: WHO.
World Health Organization , 2023. Global Tuberculosis Report 2023. Geneva, Switzerland: WHO.
Trauer JM et al., 2019. The importance of heterogeneity to the epidemiology of tuberculosis. Clin Infect Dis 69: 159–166.
Nelson EA , Buikstra JE , Herbig A , Tung TA , Bos KI , 2020. Advances in the molecular detection of tuberculosis in pre-contact Andean South America. Int J Paleopathol 29: 128–140.
Zimmer AJ , Klinton JS , Oga-Omenka C , Heitkamp P , Nyirenda CN , Furin J , Pai M , 1978. Tuberculosis in times of COVID-19. J Epidemiol Community Health 2022: 310–316.
Pan American Health Organization , 2023. Tuberculosis in the Americas. Regional Report 2021. Available at: https://www.paho.org/en/documents/tuberculosis-americas-regional-report-2021. Accessed June 6, 2024.
Mabhula A , Singh V , 2019. Drug-resistance Mycobacterium tuberculosis: Where we stand. MedChemComm 10: 1342–1360.
World Health Organization , 2017. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, 2017 Update. Geneva, Switzerland: WHO.
World Health Organization , 2019. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment Update. Geneva, Switzerland: WHO.
Dheda K , Theron G , Calligaro G , Limberis J , Davids M , Esmail A , Dawson R , Sharma SK & Mohan A Textbook of Tuberculosis and Nontuberculous Mycobacterial Diseases. New Delhi, India: Jaypee Brothers Medical Publishers, 579–608.
Paramasivan C , Balasangameshwara V , Sharma SK & Mohan A Textbook of Tuberculosis and Nontuberculous Mycobacterial Diseases. New Delhi, India: Jaypee Brothers Medical Publishers, 609–620.
World Health Organization , 2022. Tuberculosis Profile: Peru. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22PE%22&lan=%22EN%22. Accessed August 1, 2023.
World Health Organization , 2022. Tuberculosis Profile: Haiti. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22GT%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Dominican Republic. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22DO%22&lan=%22EN%22. 2022. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Bolivia (Plurinational State of). Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22BO%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Panama. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22PA%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Ecuador. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22EC%22. Accessed August 14, 2023.
World Health Organization , 2022. Tuberculosis Profile: Colombia. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22CO%22. Accessed August 14, 2023.
Brites D , Gagneux S & Gagneux S Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Cham, Switzerland: Springer International Publishing, 1–26.
Rodríguez-Castillo JG , Rodríguez-Llerena C , Argoty-Chamorro L , Guerra J , Couvin D , Rastogi N , Murcia MI , 2020. Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia. Tuberculosis (Edinb) 125: 102011.
Stucki D et al., 2016. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48: 1535–1543.
Ngabonziza JCS et al., 2020. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun 11: 2917.
Woodman M , Haeusler I , Grandjean L , 2019. Tuberculosis genetic epidemiology: A Latin American perspective. Genes (Basel) 10: 53.
Lazzarini LCO et al., 2007. Discovery of a novel Mycobacterium tuberculosis lineage that is a major cause of tuberculosis in Rio de Janeiro, Brazil. J Clin Microbiol 45: 3891–3902.
Merker M , Kohl TA , Niemann S , Supply P & Gagneux S Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Cham, Switzerland: Springer International Publishing, 43–78.
Merker M et al., 2015. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47: 242–249.
Donoghue HD , 2019. Tuberculosis and leprosy associated with historical human population movements in Europe and beyond—An overview based on mycobacterial ancient DNA. Ann Hum Biol 46: 120–128.
Castillos de Ibrahim das Neves Y , Reis AJ , Maio NX , Vianna J , Perdigão J , Bastos Ramis I , Almeida da Silva PE , Von Groll A , 2023. Genotyping methods and their contributions to the study of tuberculosis dynamic in Latin America. J Infect Dev Ctries 17: 1373–1386.
Wiens KE et al., 2018. Global variation in bacterial strains that cause tuberculosis disease: A systematic review and meta-analysis. BMC Med 16: 196.
Monteserin J et al., 2018. Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina. Infect Genet Evol 62: 1–7.
Acosta F et al., 2021. Probable long‐term prevalence for a predominant Mycobacterium tuberculosis clone of a Beijing genotype in Colon, Panama. Transbound Emerg Dis 68: 2229–2238.
Alame Emane AK , Guo X , Takiff HE , Liu S , 2021. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 129: 102091.
Alame Emane AK , Guo X , Takiff HE , Liu S , 2021. Highly transmitted M. tuberculosis strains are more likely to evolve MDR/XDR and cause outbreaks, but what makes them highly transmitted? Tuberculosis (Edinb) 129: 102092.
Ektefaie Y , Dixit A , Freschi L , Farhat MR , 2021. Globally diverse Mycobacterium tuberculosis resistance acquisition: A retrospective geographical and temporal analysis of whole genome sequences. Lancet Microbe 2: e96–e104.
Nimmo C , Millard J , Faulkner V , Monteserin J , Pugh H , Johnson EO , 2022. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 12: 954074.
Cerezo-Cortés M , Rodríguez-Castillo JG , Hernández-Pando R , Murcia MI , 2019. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 113: 336–351.
Zhu C , Yang T , Yin J , Jiang H , Takiff HE , Gao Q , Liu Q , Li W , 2023. The global success of Mycobacterium tuberculosis modern Beijing family is driven by a few recently emerged strains. Microbiol Spectr 11: e0333922.
Huang C-C et al., 2020. Mycobacterium tuberculosis Beijing lineage and risk for tuberculosis in child household contacts, Peru. Emerg Infect Dis 26: 568–578.
Iwamoto T et al., 2012. Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLoS One 7: e49651.
Nieto Ramirez LM , Ferro BE , Diaz G , Anthony RM , de Beer J , van Soolingen D , 2020. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from southwestern Colombia. PLoS One 15: 0224908.
Skhairia MA , Dekhil N , Mhenni B , Ben Fradj S , Mardassi H , 2021. Successful expansion of Mycobacterium tuberculosis Latin American and Mediterranean sublineage (L4.3/LAM) in Tunisia mainly driven by a single, long-established clonal complex. Int J Infect Dis 103: 220–225.
Brynildsrud OB et al., 2018. Global expansion Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci Adv 4: eaat5869.
Huber FD et al., 2014. Insights into the population structure of Mycobacterium tuberculosis using spoligotyping and RDRio in a southeastern Brazilian prison unit. Infect Genet Evol 26: 194–202.
De Almeida IN , Vasconcellos SEG , de Assis Figueredo LJ , Dantas NGT , Augusto CJ , Hadaad JPA , Suffys PN , da Silva Carvalho W , de Miranda SS , 2019. Frequency of the Mycobacterium tuberculosis RDRio genotype and its association with multidrug-resistant tuberculosis. BMC Infect Dis 19: 556.
Méndez MV , Abadía E , Sequera M , de Waard JH , Takiff HE , 2020. Most LAM Mycobacterium tuberculosis strains in Venezuela, but not SIT605, belong to the RDRio subfamily. Infect Genet Evol 84: 104380.
Mokrousov I et al., 2016. Latin-American–Mediterranean lineage of Mycobacterium tuberculosis: Human traces across pathogen’s phylogeography. Mol Phylogenet Evol 99: 133–143.
Cerezo I , Jiménez Y , Hernandez J , Zozio T , Murcia MI , Rastogi N , 2012. A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Bogotá, Colombia. Infect Genet Evol 12: 657–663.
Puerto G , Erazo L , Wintaco M , Castro C , Ribón W , Inírida Guerrero M , 2015. Mycobacterium tuberculosis genotypes determined by spoligotyping to be circulating in Colombia between 1999 and 2012 and their possible associations with transmission and susceptibility to first-line drugs. PLoS One 10: e0124308.
Taype CA , Agapito JC , Accinelli RA , Espinoza JR , Godreuil S , Goodman SJ , Bañuls AL , Shaw MA , 2012. Genetic diversity, population structure and drug resistance of Mycobacterium tuberculosis in Peru. Infect Genet Evol 12: 577–585.
Vinhas SA et al., 2013. Mycobacterium tuberculosis DNA fingerprint clusters and its relationship with RDRio genotype in Brazil. Tuberculosis (Edinb) 93: 207–212.
Coscolla M , Gagneux S , 2010. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7: e43–e59.
David S , Duarte EL , Leite CQ , Ribeiro JN , Maio JN , Paixão E , Portugal C , Sancho L , Germano de Sousa J , 2012. Implication of the RDRio Mycobacterium tuberculosis sublineage in multidrug resistant tuberculosis in Portugal. Infect Genet Evol 12: 1362–1367.
Skiba Y et al., 2019. Mycobacterium tuberculosis RD-Rio strain in Kazakhstan. Emerg Infect Dis 25: 604–606.
Lazzarini LCO et al., 2008. RD Rio Mycobacterium tuberculosis infection is associated with a higher frequency of cavitary pulmonary disease. J Clin Microbiol 46: 2175–2183.
Von Groll A et al., 2010. Fitness study of the RD Rio lineage and Latin American Mediterranean family of Mycobacterium tuberculosis in the city of Rio Grande, Brazil. FEMS Immunol Med Microbiol 58: 119–127.
Arenas-Suarez NE , Cuervo LI , Avila EF , Duitama-Leal A , Pineda-Peña AC , 2021. The impact of immigration on tuberculosis and HIV burden between Colombia and Venezuela and across frontier regions. Cad Saude Publica 37: e00078820.
Woodman M , Haeusler I , Grandjean L , 2019. Tuberculosis genetic epidemiology: A Latin American perspective. Genes (Basel) 10: 53.
Ranzani OT , Pescarini JM , Martinez L , Garcia-Basteiro AL , 2021. Increasing tuberculosis burden in Latin America: An alarming trend for global control efforts. BMJ Glob Health 6: e005639.
World Health Organization , 2022. Tuberculosis Profile: WHO/PAHO Region of the Americas. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&group_code=%22AMR%22&entity_type=%22group%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Argentina. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22AR%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Brazil. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22BR%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Chile. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22CL%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Costa Rica. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22CR%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Cuba. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22CU%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Dominica. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22DM%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: El Salvador. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22SV%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Guatemala. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22GT%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Guyana. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22GY%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Honduras. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22HN%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Mexico. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22MX%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Nicaragua. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22NI%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Paraguay. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22PY%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Uruguay. Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22UY%22&lan=%22EN%22. Accessed January 27, 2024.
World Health Organization , 2022. Tuberculosis Profile: Venezuela (Bolivarian Republic of). Available at: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&iso2=%22VE%22&lan=%22EN%22. Accessed January 27, 2024.
Vasconcellos SEG et al., 2014. Strain classification of Mycobacterium tuberculosis isolates in Brazil based on genotypes obtained by spoligotyping, mycobacterial interspersed repetitive unit typing and the presence of large sequence and single nucleotide polymorphism. PLoS One 9: e107747.
Gibson AL et al., 2008. Application of sensitive and specific molecular methods to uncover global dissemination of the major RDRio sublineage of the Latin American-Mediterranean Mycobacterium tuberculosis spoligotype family. J Clin Microbiol 46: 1259–1267.
Dalla Costa ER et al., 2013. Mycobacterium tuberculosis of the RD Rio genotype is the predominant cause of tuberculosis and associated with multidrug resistance in Porto Alegre city, south Brazil. J Clin Microbiol 51: 1071–1077.
Soares RO , Bidart de Macedo M , von Groll A , Almeida da Silva PE , 2013. Mycobacterium tuberculosis belonging to family LAM and sublineage RDRio: Common strains in southern Brazil for over 10 years. Braz J Microbiol 44: 1251–1255.
Moraes EB et al., 2017. Tuberculosis associated factors caused by Mycobacterium tuberculosis of the RDRio genotype. Mem Inst Oswaldo Cruz 112: 182–187.
Díaz Acosta CC et al., 2019. Exploring the ‘Latin American Mediterranean’ family and the RDRio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela. BMC Microbiol 19: 131.
Bocanegra-García V , Cortez-de-la-Fuente LJ , Nakamura-López Y , González GM , Rivera G , Palma-Nicolás JP , 2021. RDRio Mycobacterium tuberculosis strains associated with isoniazid resistance in northern Mexico. Enferm Infecc Microbiol Clin 39: 399–402.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 624 | 624 | 148 |
Full Text Views | 34 | 34 | 7 |
PDF Downloads | 36 | 36 | 9 |