World Health Organization , 2015. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90: 33–44.
Gomez-Ochoa SA , Rojas LZ , Echeverria LE , Muka T , Franco OH , 2022. Global, regional, and national trends of Chagas disease from 1990 to 2019: Comprehensive analysis of the Global Burden of Disease study. Glob Heart 17: 59.
Martins-Melo FR , Lima Mda S , Ramos AN Jr , Alencar CH , Heukelbach J , 2014. Prevalence of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in Brazil: A systematic review and meta-analysis. Trop Med Int Health 19: 943–957.
Buekens P et al., 2013. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: Study protocol. Reprod Health 10: 55.
Buekens P et al., 2018. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: An observational prospective study. Am J Trop Med Hyg 98: 478–485.
Dirección de Epidemiología del Ministerio de Salud , 2022. Boletín Epidemiológico Nacional: 34 .Buenos Aires, Argentina: Ministerio de Salud.
Santana KH , Oliveira LGR , Barros de Castro D , Pereira M , 2020. Epidemiology of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in the Americas: Systematic review and meta-analysis. Trop Med Int Health 25: 752–763.
Howard EJ , Xiong X , Carlier Y , Sosa-Estani S , Buekens P , 2014. Frequency of the congenital transmission of Trypanosoma cruzi: A systematic review and meta-analysis. BJOG 121: 22–33.
Matthews S , Tannis A , Puchner KP , Bottazzi ME , Cafferata ML , Comande D , Buekens P , 2022. Estimation of the morbidity and mortality of congenital Chagas disease: A systematic review and meta-analysis. PLoS Negl Trop Dis 16: e0010376.
Torrico F , Alonso-Vega C , Suarez E , Rodriguez P , Torrico MC , Dramaix M , Truyens C , Carlier Y , 2004. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. Am J Trop Med Hyg 70: 201–209.
Desale H , Buekens P , Alger J , Cafferata ML , Harville EW , Herrera C , Truyens C , Dumonteil E , 2022. Epigenetic signature of exposure to maternal Trypanosoma cruzi infection in cord blood cells from uninfected newborns. Epigenomics 14: 913–927.
Carlier Y , Altcheh J , Angheben A , Freilij H , Luquetti AO , Schijman AG , Segovia M , Wagner N , Albajar Vinas P , 2019. Congenital Chagas disease: Updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women. PLoS Negl Trop Dis 13: e0007694.
Papageorghiou AT et al., 2018. The INTERGROWTH–21st fetal growth standards: Toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol 218: S630–S640.
World Health Organization , 2004. ICD-10. International Statistical Classification of Diseases and Related Health Problems. Geneva, Switzerland: WHO.
Capurro H , Konichezky S , Fonseca D , Caldeyro-Barcia R , 1978. A simplified method for diagnosis of gestational age in the newborn infant. J Pediatr 93: 120–122.
Kiserud T et al., 2017. The World Health Organization fetal growth charts: A multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med 14: e1002220.
Hermann E , Truyens C , Alonso-Vega C , Rodriguez P , Berthe A , Torrico F , Carlier Y , 2004. Congenital transmission of Trypanosoma cruzi is associated with maternal enhanced parasitemia and decreased production of interferon-gamma in response to parasite antigens. J Infect Dis 189: 1274–1281.
Brutus L , Castillo H , Bernal C , Salas NA , Schneider D , Santalla JA , Chippaux JP , 2010. Detectable Trypanosoma cruzi parasitemia during pregnancy and delivery as a risk factor for congenital Chagas disease. Am J Trop Med Hyg 83: 1044–1047.
Bua J , Volta BJ , Velazquez EB , Ruiz AM , Rissio AM , Cardoni RL , 2012. Vertical transmission of Trypanosoma cruzi infection: Quantification of parasite burden in mothers and their children by parasite DNA amplification. Trans R Soc Trop Med Hyg 106: 623–628.
Carlier Y , Schijman AG , Kemmerling U , 2020. Placenta, Trypanosoma cruzi, and congenital Chagas disease. Curr Trop Med Rep 7: 172–182.
Torrico MC , Solano M , Guzman JM , Parrado R , Suarez E , Alonzo-Vega C , Truyens C , Carlier Y , Torrico F , 2005. Estimation of the parasitemia in Trypanosoma cruzi human infection: High parasitemias are associated with severe and fatal congenital Chagas disease. Rev Soc Bras Med Trop 38 (Suppl 2 ):58–61. (In Spanish.)
Carlier Y , Truyens C , 2015. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Trop 151: 103–115.
Solana ME , Alba Soto CD , Fernandez MC , Poncini CV , Postan M , Gonzalez Cappa SM , 2009. Reduction of parasite levels in blood improves pregnancy outcome during experimental Trypanosoma cruzi infection. Parasitology 136: 627–639.
Albu AR , Anca AF , Horhoianu VV , Horhoianu IA , 2014. Predictive factors for intrauterine growth restriction. J Med Life 7: 165–171.
Vekemans J , Truyens C , Torrico F , Solano M , Torrico MC , Rodriguez P , Alonso-Vega C , Carlier Y , 2000. Maternal Trypanosoma cruzi infection upregulates capacity of uninfected neonate cells to produce pro- and anti-inflammatory cytokines. Infect Immun 68: 5430–5434.
Cuna WR , Choque AG , Passera R , Rodriguez C , 2009. Pro-inflammatory cytokine production in Chagasic mothers and their uninfected newborns. J Parasitol 95: 891–894.
Erlebacher A , 2013. Immunology of the maternal-fetal interface. Annu Rev Immunol 31: 387–411.
Punt J , Stranford S , Jones P , Owen J , 2018. Kuby Immunology, 8th ed. New York, NY: W. H. Freeman.
Lin H , Mosmann TR , Guilbert L , Tuntipopipat S , Wegmann TG , 1993. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 151: 4562–4573.
Brann E , Edvinsson A , Rostedt Punga A , Sundstrom-Poromaa I , Skalkidou A , 2019. Inflammatory and anti-inflammatory markers in plasma: From late pregnancy to early postpartum. Sci Rep 9: 1863.
Abu-Raya B , Michalski C , Sadarangani M , Lavoie PM , 2020. Maternal immunological adaptation during normal pregnancy. Front Immunol 11: 575197.
Reinhard G , Noll A , Schlebusch H , Mallmann P , Ruecker AV , 1998. Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem Biophys Res Commun 245: 933–938.
Dauby N , Alonso-Vega C , Suarez E , Flores A , Hermann E , Cordova M , Tellez T , Torrico F , Truyens C , Carlier Y , 2009. Maternal infection with Trypanosoma cruzi and congenital Chagas disease induce a trend to a type 1 polarization of infant immune responses to vaccines. PLoS Negl Trop Dis 3: e571.
Barker DJ , Osmond C , 1986. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1: 1077–1081.
Carlier Y , Rivera MT , Truyens C , Puissant F , Milaire J , 1987. Interactions between chronic murine Trypanosoma cruzi infection and pregnancy: Fetal growth retardation. Am J Trop Med Hyg 37: 534–540.
Lee AC , Panchal P , Folger L , Whelan H , Whelan R , Rosner B , Blencowe H , Lawn JE , 2017. Diagnostic accuracy of neonatal assessment for gestational age determination: A systematic review. Pediatrics 140: e20171423.
Lozano D et al., 2019. Use of rapid diagnostic tests (RDTs) for conclusive diagnosis of chronic Chagas disease—Field implementation in the Bolivian Chaco region. PLoS Negl Trop Dis 13: e0007877.
Mendicino D , Colussi C , Moretti E , 2019. Simultaneous use of two rapid diagnostic tests for the diagnosis of Chagas disease. Trop Doct 49: 23–26.
Eguez KE , Alonso-Padilla J , Teran C , Chipana Z , Garcia W , Torrico F , Gascon J , Lozano-Beltran DF , Pinazo MJ , 2017. Rapid diagnostic tests duo as alternative to conventional serological assays for conclusive Chagas disease diagnosis. PLoS Negl Trop Dis 11: e0005501.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1794 | 1794 | 410 |
Full Text Views | 58 | 58 | 1 |
PDF Downloads | 66 | 66 | 0 |
We aimed to measure the association between Trypanosoma cruzi infection in pregnancy and reduced fetal growth in the absence of T. cruzi congenital transmission. We conducted a cross-sectional study of secondary data of all singleton live births between 2011 and 2013 in five hospitals from Argentina, Honduras, and Mexico. We excluded newborns with T. cruzi infection. Noninfected pregnant people were those without any positive rapid tests. The main study outcomes were birth weight, head circumference, and length for gestational age and sex. Logistic regression models were adjusted for country, age, education level, and obstetric history. Of the 26,544 deliveries, 459 (1.7%) pregnant people were found by rapid tests to be positive for T. cruzi. Of these, 320 were positive by enzyme-linked immunosorbent assay and 231 had a positive polymerase chain reaction (PCR) test. Uninfected newborns from T. cruzi-infected pregnant people were more likely to have birth weights below the 5th and 10th percentiles and head circumferences below the 3rd and 10th percentiles. Among T. cruzi-infected pregnant people diagnosed by PCR, the odds ratios were 1.58 for birth weight below the 10th percentile (95% CI, 1.12–2.23) and 1.57 for birth weight below the 5th percentile (95% CI, 1.02–2.42). Higher T. cruzi parasitic loads in pregnancy had a stronger association with reduced fetal growth (both in birth weight and head circumference), with an odds ratio of 2.31 (95% CI, 1.36–3.91) for a birth weight below the 5th percentile. The association shows, irrespective of causality, that newborns of pregnancies with T. cruzi have an increased risk of reduced fetal growth. We recommend further studies to assess other potential confounders and the causality of these associations.
Financial support: This work was supported by
Disclosures: The study was approved by the Tulane University Institutional Review Board and the Ethics Committees of the Centro de Educacion Medica e Investigaciones Clinicas “Norberto Quirno” (CEMIC), Argentina, the Facultad de Ciencias Medicas, Universidad Nacional Autonoma de Honduras, and the Universidad Autonoma de Yucatan, Mexico.
Authors’ addresses: Angel Paternina-Caicedo, Tamara Hammerman, and Pierre Buekens, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, E-mails: apaterninacaicedo@tulane.edu, thammerman@tulane.edu, and pbuekens@tulane.edu. Jackeline Alger, Departamento de Laboratorio Clínico, Hospital Escuela, Tegucigalpa, Honduras, and Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras, E-mail: jackeline.alger@hospitalescuela.edu.hn. Maria Luisa Cafferata, Unidad de Investigación Clínica y Epidemiológica Montevideo, Montevideo, Uruguay, E-mail: mcafferata@unicem-web.org. Yves Carlier, Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium, E-mail: yves.carlier@ulb.be. Eric Dumonteil and Claudia Herrera, Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, E-mails: edumonte@tulane.edu and cherrera@tulane.edu. Luz Gibbons, Instituto de Efectividad Clínica y Sanitaria (IECS), Buenos Aires, Argentina, E-mail: lgibbons@iecs.org.ar.
World Health Organization , 2015. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90: 33–44.
Gomez-Ochoa SA , Rojas LZ , Echeverria LE , Muka T , Franco OH , 2022. Global, regional, and national trends of Chagas disease from 1990 to 2019: Comprehensive analysis of the Global Burden of Disease study. Glob Heart 17: 59.
Martins-Melo FR , Lima Mda S , Ramos AN Jr , Alencar CH , Heukelbach J , 2014. Prevalence of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in Brazil: A systematic review and meta-analysis. Trop Med Int Health 19: 943–957.
Buekens P et al., 2013. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: Study protocol. Reprod Health 10: 55.
Buekens P et al., 2018. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: An observational prospective study. Am J Trop Med Hyg 98: 478–485.
Dirección de Epidemiología del Ministerio de Salud , 2022. Boletín Epidemiológico Nacional: 34 .Buenos Aires, Argentina: Ministerio de Salud.
Santana KH , Oliveira LGR , Barros de Castro D , Pereira M , 2020. Epidemiology of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in the Americas: Systematic review and meta-analysis. Trop Med Int Health 25: 752–763.
Howard EJ , Xiong X , Carlier Y , Sosa-Estani S , Buekens P , 2014. Frequency of the congenital transmission of Trypanosoma cruzi: A systematic review and meta-analysis. BJOG 121: 22–33.
Matthews S , Tannis A , Puchner KP , Bottazzi ME , Cafferata ML , Comande D , Buekens P , 2022. Estimation of the morbidity and mortality of congenital Chagas disease: A systematic review and meta-analysis. PLoS Negl Trop Dis 16: e0010376.
Torrico F , Alonso-Vega C , Suarez E , Rodriguez P , Torrico MC , Dramaix M , Truyens C , Carlier Y , 2004. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. Am J Trop Med Hyg 70: 201–209.
Desale H , Buekens P , Alger J , Cafferata ML , Harville EW , Herrera C , Truyens C , Dumonteil E , 2022. Epigenetic signature of exposure to maternal Trypanosoma cruzi infection in cord blood cells from uninfected newborns. Epigenomics 14: 913–927.
Carlier Y , Altcheh J , Angheben A , Freilij H , Luquetti AO , Schijman AG , Segovia M , Wagner N , Albajar Vinas P , 2019. Congenital Chagas disease: Updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women. PLoS Negl Trop Dis 13: e0007694.
Papageorghiou AT et al., 2018. The INTERGROWTH–21st fetal growth standards: Toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol 218: S630–S640.
World Health Organization , 2004. ICD-10. International Statistical Classification of Diseases and Related Health Problems. Geneva, Switzerland: WHO.
Capurro H , Konichezky S , Fonseca D , Caldeyro-Barcia R , 1978. A simplified method for diagnosis of gestational age in the newborn infant. J Pediatr 93: 120–122.
Kiserud T et al., 2017. The World Health Organization fetal growth charts: A multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med 14: e1002220.
Hermann E , Truyens C , Alonso-Vega C , Rodriguez P , Berthe A , Torrico F , Carlier Y , 2004. Congenital transmission of Trypanosoma cruzi is associated with maternal enhanced parasitemia and decreased production of interferon-gamma in response to parasite antigens. J Infect Dis 189: 1274–1281.
Brutus L , Castillo H , Bernal C , Salas NA , Schneider D , Santalla JA , Chippaux JP , 2010. Detectable Trypanosoma cruzi parasitemia during pregnancy and delivery as a risk factor for congenital Chagas disease. Am J Trop Med Hyg 83: 1044–1047.
Bua J , Volta BJ , Velazquez EB , Ruiz AM , Rissio AM , Cardoni RL , 2012. Vertical transmission of Trypanosoma cruzi infection: Quantification of parasite burden in mothers and their children by parasite DNA amplification. Trans R Soc Trop Med Hyg 106: 623–628.
Carlier Y , Schijman AG , Kemmerling U , 2020. Placenta, Trypanosoma cruzi, and congenital Chagas disease. Curr Trop Med Rep 7: 172–182.
Torrico MC , Solano M , Guzman JM , Parrado R , Suarez E , Alonzo-Vega C , Truyens C , Carlier Y , Torrico F , 2005. Estimation of the parasitemia in Trypanosoma cruzi human infection: High parasitemias are associated with severe and fatal congenital Chagas disease. Rev Soc Bras Med Trop 38 (Suppl 2 ):58–61. (In Spanish.)
Carlier Y , Truyens C , 2015. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Trop 151: 103–115.
Solana ME , Alba Soto CD , Fernandez MC , Poncini CV , Postan M , Gonzalez Cappa SM , 2009. Reduction of parasite levels in blood improves pregnancy outcome during experimental Trypanosoma cruzi infection. Parasitology 136: 627–639.
Albu AR , Anca AF , Horhoianu VV , Horhoianu IA , 2014. Predictive factors for intrauterine growth restriction. J Med Life 7: 165–171.
Vekemans J , Truyens C , Torrico F , Solano M , Torrico MC , Rodriguez P , Alonso-Vega C , Carlier Y , 2000. Maternal Trypanosoma cruzi infection upregulates capacity of uninfected neonate cells to produce pro- and anti-inflammatory cytokines. Infect Immun 68: 5430–5434.
Cuna WR , Choque AG , Passera R , Rodriguez C , 2009. Pro-inflammatory cytokine production in Chagasic mothers and their uninfected newborns. J Parasitol 95: 891–894.
Erlebacher A , 2013. Immunology of the maternal-fetal interface. Annu Rev Immunol 31: 387–411.
Punt J , Stranford S , Jones P , Owen J , 2018. Kuby Immunology, 8th ed. New York, NY: W. H. Freeman.
Lin H , Mosmann TR , Guilbert L , Tuntipopipat S , Wegmann TG , 1993. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol 151: 4562–4573.
Brann E , Edvinsson A , Rostedt Punga A , Sundstrom-Poromaa I , Skalkidou A , 2019. Inflammatory and anti-inflammatory markers in plasma: From late pregnancy to early postpartum. Sci Rep 9: 1863.
Abu-Raya B , Michalski C , Sadarangani M , Lavoie PM , 2020. Maternal immunological adaptation during normal pregnancy. Front Immunol 11: 575197.
Reinhard G , Noll A , Schlebusch H , Mallmann P , Ruecker AV , 1998. Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem Biophys Res Commun 245: 933–938.
Dauby N , Alonso-Vega C , Suarez E , Flores A , Hermann E , Cordova M , Tellez T , Torrico F , Truyens C , Carlier Y , 2009. Maternal infection with Trypanosoma cruzi and congenital Chagas disease induce a trend to a type 1 polarization of infant immune responses to vaccines. PLoS Negl Trop Dis 3: e571.
Barker DJ , Osmond C , 1986. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1: 1077–1081.
Carlier Y , Rivera MT , Truyens C , Puissant F , Milaire J , 1987. Interactions between chronic murine Trypanosoma cruzi infection and pregnancy: Fetal growth retardation. Am J Trop Med Hyg 37: 534–540.
Lee AC , Panchal P , Folger L , Whelan H , Whelan R , Rosner B , Blencowe H , Lawn JE , 2017. Diagnostic accuracy of neonatal assessment for gestational age determination: A systematic review. Pediatrics 140: e20171423.
Lozano D et al., 2019. Use of rapid diagnostic tests (RDTs) for conclusive diagnosis of chronic Chagas disease—Field implementation in the Bolivian Chaco region. PLoS Negl Trop Dis 13: e0007877.
Mendicino D , Colussi C , Moretti E , 2019. Simultaneous use of two rapid diagnostic tests for the diagnosis of Chagas disease. Trop Doct 49: 23–26.
Eguez KE , Alonso-Padilla J , Teran C , Chipana Z , Garcia W , Torrico F , Gascon J , Lozano-Beltran DF , Pinazo MJ , 2017. Rapid diagnostic tests duo as alternative to conventional serological assays for conclusive Chagas disease diagnosis. PLoS Negl Trop Dis 11: e0005501.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1794 | 1794 | 410 |
Full Text Views | 58 | 58 | 1 |
PDF Downloads | 66 | 66 | 0 |