Nathanson E , Nunn P , Uplekar M , Floyd K , Jaramillo E , Lonnroth K , Weil D , Raviglione M , 2010. MDR tuberculosis – Critical steps for prevention and control. N Engl J Med 363: 1050–1058.
World Health Organization , 2022. Global Tuberculosis Report 2022. Available at: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. Accessed April 22, 2024.
Seung KJ , Keshavjee S , Rich ML , 2015. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5: a017863.
World Health Organization , 2019. Global Tuberculosis Report 2019. Geneva, Switzerland: WHO. Available at: https://www.who.int/publications/i/item/9789241565714.
World Health Organization , 2010. Multidrug and Extensively Drug Resistant TB (M/XD-TB): Global Report on Surveillance and Response. Available at: https://iris.who.int/handle/10665/44286.
Zhang Y , Mitchison D , 2003. The curious characteristics of pyrazinamide: A review. Int J Tuberc Lung Dis 7: 6–21.
Telenti A , Imboden P , Marchesi F , Lowrie D , Cole S , Colston MJ , Matter L , Schopfer K , Bodmer T , 1993. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647–650.
Andre E , Goeminne L , Cabibbe A , Beckert P , Kabamba MB , Mathys V , Gagneux S , Niemann S , Van Ingen J , Cambau E , 2017. Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clin Microbiol Infect 23: 167–172.
Comas I , Borrell S , Roetzer A , Rose G , Malla B , Kato MM , Galagan J , Niemann S , Gagneux S , 2011. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44: 106–110.
Li QJ et al., 2016. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrob Agents Chemother 60: 2807–2812.
Unissa AN , Subbian S , Hanna LE , Selvakumar N , 2016. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol 45: 474–492.
Sun Q , Xiao TY , Liu HC , Zhao XQ , Liu ZG , Li YN , Zeng H , Zhao LL , Wan KL , 2018. Mutations within embCAB are associated with variable level of ethambutol resistance in Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother 62: e01279-17.
Scorpio A , Zhang Y , 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2: 662–667.
Vallejos SK , Lopez JM , Antiparra R , Toscano E , Saavedra H , Kirwan DE , Amzel L , Gilman R , Maruenda H , Sheen P , 2020. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep 10: 8356.
Khan MT , Khan A , Rehman AU , Wang Y , Akhtar K , Malik SI , Wei DQ , 2019. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci Rep 9: 7482.
Gopal P , Nartey W , Ragunathan P , Sarathy J , Kaya F , Yee M , Setzer C , Manimekalai MS , Dartois V , Gruber G , 2017. Pyrazinoic acid inhibits mycobacterial coenzyme A biosynthesis by binding to aspartate decarboxylase PanD. ACS Infect Dis 3: 807–819.
Pandey B , Grover S , Tyagi C , Goyal S , Jamal S , Singh A , Kaur J , Grover A , 2016. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene 581: 31–42.
Zhang Y , Zhang J , Cui P , Zhang Y , Zhang W , 2017. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 61: 00940-17.
Khosravi AD , Etemad N , Hashemzadeh M , Khandan DS , Goodarzi H , 2017. Frequency of rrs and rpsL mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from Iranian patients. J Glob Antimicrob Resist 9: 51–56.
Cui Z , Wang J , Lu J , Huang X , Hu Z , 2011. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from east China in 2009. BMC Infect Dis 11: 78.
Pinheiro M , Ribeiro M , 2000. Comparison of the Bactec 460TB system and the Bactec MGIT 960 system in recovery of mycobacteria from clinical specimens. Clin Microbiol Infect 6: 171–173.
McCarter YS , Ratkiewicz IN , Robinson A , 1998. Cord formation in BACTEC medium is a reliable, rapid method for presumptive identification of Mycobacterium tuberculosis complex. J Clin Microbiol 36: 2769–2771.
Yin X , Zheng L , Lin L , Hu Y , Zheng F , Hu Y , Wang Q , 2013. Commercial MPT64-based tests for rapid identification of Mycobacterium tuberculosis complex: A meta-analysis. J Infect 67: 369–377.
Suresh P , Biswas L , Prasad V , Kumar A , Sivadas S , Khan S , Biswas R , 2020. BCG infection due to MPT64-negative strain: A diagnostic challenge. Am J Trop Med Hyg 103: 1072.
Ardito F , Posteraro B , Sanguinetti M , Zanetti S , Fadda G , 2001. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 39: 4440–4444.
Giampaglia C , Martins M , de Oliveira Vieira G , Vinhas S , da Silva T , Palaci M , Marsico A , Hadad D , Mello F , de Souza Fonseca L , 2007. Multicentre evaluation of an automated BACTEC 960 system for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 11: 986–991.
Mishra GP , Mulani JD , 2018. First national anti-tuberculosis drug resistance survey (NDRS) from India: An eye opener. J. Infectiol Epidemiol 1: 26–29.
Ministry of Health and Family Welfare , 2023. India Tuberculosis Report. Available at: https://tbcindia.gov.in/showfile.php?lid=3680. Accessed April 22, 2024.
Salari N , Kanjoori AH , Hosseinian FA , Hasheminezhad R , Mansouri K , Mohammadi M , 2023. Global prevalence of drug-resistant tuberculosis: A systematic review and meta-analysis. Infect Dis Poverty 12: 1–12.
Molla KA , Reta MA , Ayene YY , 2022. Prevalence of multidrug-resistant tuberculosis in East Africa: A systematic review and meta-analysis. PLoS One 17: e0270272.
Shivekar SS , Kaliaperumal V , Brammacharry U , Sakkaravarthy A , Raj CV , Alagappan C , Muthaiah M , 2020. Prevalence and factors associated with multidrug-resistant tuberculosis in south India. Sci Rep 10: 17552.
Kurbatova EV , Cavanaugh JS , Dalton TS , Click E , Cegielski JP , 2013. Epidemiology of pyrazinamide-resistant tuberculosis in the United States, 1999–2009. Clin Infect Dis 57: 1081–1093.
Naluyange R , Mboowa G , Komakech K , Semugenze D , Kateete DP , Ssengooba W , 2020. High prevalence of phenotypic pyrazinamide resistance and its association with pncA gene mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One 15: e0232543.
Whitfield MG , Soeters HM , Warren RM , York T , Sampson SL , Streicher EM , Van Helden PD , Van Rie A , 2015. A global perspective on pyrazinamide resistance: Systematic review and meta-analysis. PLoS One 10: e0133869.
Poonawala H , Kumar N , Peacock SJ , 2020. A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases. Infect Genet Evol 78: 104072.
Gisch N et al., 2022. Sub-lineage specific phenolic glycolipid patterns in the Mycobacterium tuberculosis complex lineage 1. Front Microbiol 13: 832054.
Li MC , Lu J , Lu Y , Xiao TY , Liu HC , Lin SQ , Xu D , Li GL , Zhao XQ , Liu ZG , 2021. rpoB mutations and effects on rifampin resistance in Mycobacterium tuberculosis. Infect Drug Resist 14: 4119–4128.
Dorman SE et al., 2018. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: A prospective multicentre diagnostic accuracy study. Lancet Infect Dis 18: 76–84.
Di Tanna GL et al., 2019. Effect of Xpert MTB/RIF on clinical outcomes in routine care settings: Individual patient data meta-analysis. Lancet Glob Health 7: e191–e199.
Ando H , Kondo Y , Suetake T , Toyota E , Kato S , Mori T , Kirikae T , 2010. Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 54: 1793–1799.
Lee AS , Teo AS , Wong SY , 2001. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 45: 2157–2159.
Heifets L , 2002. Susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol 51: 11–12.
World Health Organization , 2018. Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. Available at: https://apps.who.int/iris/bitstream/handle/10665/275469/9789241514842-eng.pdf.
Lemaitre N , Sougakoff W , Truffot-Pernot C , Jarlier V , 1999. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 43: 1761–1763.
The rising prevalence of drug-resistant Mycobacterium tuberculosis (MTB) strains poses a significant challenge to global tuberculosis (TB) control efforts. This study aimed to analyze drug resistance patterns and investigate the molecular characteristics of 193 MTB clinical isolates to shed light on the mechanisms of drug resistance. Of the 193 MTB clinical isolates, 28.5% (n = 53) exhibited mono-drug or multidrug resistance. Pyrazinamide mono-drug resistance (PZAr) was the most prevalent (17%, n = 33), followed by isoniazid mono-drug resistance (3.6%, n = 7). Rifampicin resistance was associated with mutations in the rpoB gene (D435Y, D435V, S450L, L452P). Isoniazid resistance mutations were found in the katG (S315T), inhA (C[-15] T), and ndh (R268H) genes, whereas ethambutol resistance mutations were observed in the embB gene (M306V, M306I, M306L, G406S, Q497R). Surprisingly, 94% of PZAr isolates (n = 31) showed no mutations in the pncA or rpsA genes. The presence of the R268H mutation in the ndh gene, not previously linked to PZAr, was detected in 15% of PZAr isolates (n = 5), suggesting its potential contribution to PZAr in specific cases but not as a predominant mechanism. The specific molecular mechanisms underlying PZAr in the majority of the isolates remain unknown, emphasizing the need for further research to uncover the contributing factors. These findings contribute to the understanding of drug resistance patterns and can guide future efforts in TB control and management.
Financial support: This work was supported by the
Authors’ contributions: P. Suresh: Data curation, formal analysis, investigation; S. Thulasidharan: Data curation, formal analysis, investigation; A. Kumar: Resources, project administration, supervision, investigation, data curation, formal analysis, writing (review and editing); S. Sunil: Data curation, formal analysis, investigation; M. Roy: Data curation, formal analysis, investigation; V. P. Ramesh: Data curation, formal analysis, investigation; R. Biswas: Resources, investigation, writing (review and editing); A. Kunoor: Resources, analysis, investigation; L. Biswas: Conceptualization, resources, project administration, supervision, validation, investigation, data curation, formal analysis, writing (original draft).
Authors’ addresses: Parasmal Suresh, Amrita Center for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: parasmals@aims.amrita.edu. Sunisha Sunil, Amrita Center for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: sunisha.sunil11@gmail.com. Maria Roy, Amrita Center for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: maria.roy.bio@gmail.com. Varsha P Ramesh Amrita Center for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: varsharamesh1898@gmail.com. Raja Biswas Amrita Center for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: rajabiswas@aims.amrita.edu. Lalitha Biswas, Amrita Center for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: lalithabiswas@aims.amrita.edu. Swathy Thulasidharan, Department of Microbiology Amrita Institute of Medical Sciences & Research Centre,Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: swathy.thulasidharan@gmail.com. Anil Kumar, Department of Microbiology Amrita Institute of Medical Sciences & Research Centre,Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, E-mail: vanilkumar@aims.amrita.edu. Akhilesh Kunoor, Department of Respiratory Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, India, Email: akhileshk@aims.amrita.edu.
Nathanson E , Nunn P , Uplekar M , Floyd K , Jaramillo E , Lonnroth K , Weil D , Raviglione M , 2010. MDR tuberculosis – Critical steps for prevention and control. N Engl J Med 363: 1050–1058.
World Health Organization , 2022. Global Tuberculosis Report 2022. Available at: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. Accessed April 22, 2024.
Seung KJ , Keshavjee S , Rich ML , 2015. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5: a017863.
World Health Organization , 2019. Global Tuberculosis Report 2019. Geneva, Switzerland: WHO. Available at: https://www.who.int/publications/i/item/9789241565714.
World Health Organization , 2010. Multidrug and Extensively Drug Resistant TB (M/XD-TB): Global Report on Surveillance and Response. Available at: https://iris.who.int/handle/10665/44286.
Zhang Y , Mitchison D , 2003. The curious characteristics of pyrazinamide: A review. Int J Tuberc Lung Dis 7: 6–21.
Telenti A , Imboden P , Marchesi F , Lowrie D , Cole S , Colston MJ , Matter L , Schopfer K , Bodmer T , 1993. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647–650.
Andre E , Goeminne L , Cabibbe A , Beckert P , Kabamba MB , Mathys V , Gagneux S , Niemann S , Van Ingen J , Cambau E , 2017. Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clin Microbiol Infect 23: 167–172.
Comas I , Borrell S , Roetzer A , Rose G , Malla B , Kato MM , Galagan J , Niemann S , Gagneux S , 2011. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44: 106–110.
Li QJ et al., 2016. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrob Agents Chemother 60: 2807–2812.
Unissa AN , Subbian S , Hanna LE , Selvakumar N , 2016. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol 45: 474–492.
Sun Q , Xiao TY , Liu HC , Zhao XQ , Liu ZG , Li YN , Zeng H , Zhao LL , Wan KL , 2018. Mutations within embCAB are associated with variable level of ethambutol resistance in Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother 62: e01279-17.
Scorpio A , Zhang Y , 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2: 662–667.
Vallejos SK , Lopez JM , Antiparra R , Toscano E , Saavedra H , Kirwan DE , Amzel L , Gilman R , Maruenda H , Sheen P , 2020. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep 10: 8356.
Khan MT , Khan A , Rehman AU , Wang Y , Akhtar K , Malik SI , Wei DQ , 2019. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci Rep 9: 7482.
Gopal P , Nartey W , Ragunathan P , Sarathy J , Kaya F , Yee M , Setzer C , Manimekalai MS , Dartois V , Gruber G , 2017. Pyrazinoic acid inhibits mycobacterial coenzyme A biosynthesis by binding to aspartate decarboxylase PanD. ACS Infect Dis 3: 807–819.
Pandey B , Grover S , Tyagi C , Goyal S , Jamal S , Singh A , Kaur J , Grover A , 2016. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene 581: 31–42.
Zhang Y , Zhang J , Cui P , Zhang Y , Zhang W , 2017. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 61: 00940-17.
Khosravi AD , Etemad N , Hashemzadeh M , Khandan DS , Goodarzi H , 2017. Frequency of rrs and rpsL mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from Iranian patients. J Glob Antimicrob Resist 9: 51–56.
Cui Z , Wang J , Lu J , Huang X , Hu Z , 2011. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from east China in 2009. BMC Infect Dis 11: 78.
Pinheiro M , Ribeiro M , 2000. Comparison of the Bactec 460TB system and the Bactec MGIT 960 system in recovery of mycobacteria from clinical specimens. Clin Microbiol Infect 6: 171–173.
McCarter YS , Ratkiewicz IN , Robinson A , 1998. Cord formation in BACTEC medium is a reliable, rapid method for presumptive identification of Mycobacterium tuberculosis complex. J Clin Microbiol 36: 2769–2771.
Yin X , Zheng L , Lin L , Hu Y , Zheng F , Hu Y , Wang Q , 2013. Commercial MPT64-based tests for rapid identification of Mycobacterium tuberculosis complex: A meta-analysis. J Infect 67: 369–377.
Suresh P , Biswas L , Prasad V , Kumar A , Sivadas S , Khan S , Biswas R , 2020. BCG infection due to MPT64-negative strain: A diagnostic challenge. Am J Trop Med Hyg 103: 1072.
Ardito F , Posteraro B , Sanguinetti M , Zanetti S , Fadda G , 2001. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 39: 4440–4444.
Giampaglia C , Martins M , de Oliveira Vieira G , Vinhas S , da Silva T , Palaci M , Marsico A , Hadad D , Mello F , de Souza Fonseca L , 2007. Multicentre evaluation of an automated BACTEC 960 system for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 11: 986–991.
Mishra GP , Mulani JD , 2018. First national anti-tuberculosis drug resistance survey (NDRS) from India: An eye opener. J. Infectiol Epidemiol 1: 26–29.
Ministry of Health and Family Welfare , 2023. India Tuberculosis Report. Available at: https://tbcindia.gov.in/showfile.php?lid=3680. Accessed April 22, 2024.
Salari N , Kanjoori AH , Hosseinian FA , Hasheminezhad R , Mansouri K , Mohammadi M , 2023. Global prevalence of drug-resistant tuberculosis: A systematic review and meta-analysis. Infect Dis Poverty 12: 1–12.
Molla KA , Reta MA , Ayene YY , 2022. Prevalence of multidrug-resistant tuberculosis in East Africa: A systematic review and meta-analysis. PLoS One 17: e0270272.
Shivekar SS , Kaliaperumal V , Brammacharry U , Sakkaravarthy A , Raj CV , Alagappan C , Muthaiah M , 2020. Prevalence and factors associated with multidrug-resistant tuberculosis in south India. Sci Rep 10: 17552.
Kurbatova EV , Cavanaugh JS , Dalton TS , Click E , Cegielski JP , 2013. Epidemiology of pyrazinamide-resistant tuberculosis in the United States, 1999–2009. Clin Infect Dis 57: 1081–1093.
Naluyange R , Mboowa G , Komakech K , Semugenze D , Kateete DP , Ssengooba W , 2020. High prevalence of phenotypic pyrazinamide resistance and its association with pncA gene mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One 15: e0232543.
Whitfield MG , Soeters HM , Warren RM , York T , Sampson SL , Streicher EM , Van Helden PD , Van Rie A , 2015. A global perspective on pyrazinamide resistance: Systematic review and meta-analysis. PLoS One 10: e0133869.
Poonawala H , Kumar N , Peacock SJ , 2020. A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases. Infect Genet Evol 78: 104072.
Gisch N et al., 2022. Sub-lineage specific phenolic glycolipid patterns in the Mycobacterium tuberculosis complex lineage 1. Front Microbiol 13: 832054.
Li MC , Lu J , Lu Y , Xiao TY , Liu HC , Lin SQ , Xu D , Li GL , Zhao XQ , Liu ZG , 2021. rpoB mutations and effects on rifampin resistance in Mycobacterium tuberculosis. Infect Drug Resist 14: 4119–4128.
Dorman SE et al., 2018. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: A prospective multicentre diagnostic accuracy study. Lancet Infect Dis 18: 76–84.
Di Tanna GL et al., 2019. Effect of Xpert MTB/RIF on clinical outcomes in routine care settings: Individual patient data meta-analysis. Lancet Glob Health 7: e191–e199.
Ando H , Kondo Y , Suetake T , Toyota E , Kato S , Mori T , Kirikae T , 2010. Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 54: 1793–1799.
Lee AS , Teo AS , Wong SY , 2001. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 45: 2157–2159.
Heifets L , 2002. Susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol 51: 11–12.
World Health Organization , 2018. Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. Available at: https://apps.who.int/iris/bitstream/handle/10665/275469/9789241514842-eng.pdf.
Lemaitre N , Sougakoff W , Truffot-Pernot C , Jarlier V , 1999. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 43: 1761–1763.