Cross Talk between MicroRNAs and Dengue Virus

Nur Omar Macha Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Nur Omar Macha in
Current site
Google Scholar
PubMed
Close
,
Thamil Vaani Komarasamy Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Thamil Vaani Komarasamy in
Current site
Google Scholar
PubMed
Close
,
Sarahani Harun Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia

Search for other papers by Sarahani Harun in
Current site
Google Scholar
PubMed
Close
,
Nur Amelia Azreen Adnan Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Nur Amelia Azreen Adnan in
Current site
Google Scholar
PubMed
Close
,
Sharifah Syed Hassan Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Sharifah Syed Hassan in
Current site
Google Scholar
PubMed
Close
, and
Vinod R. M. T. Balasubramaniam Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Vinod R. M. T. Balasubramaniam in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.

Author Notes

Authors’ addresses: Nur Omar Macha, Thamil Vaani Komarasamy, Nur Amelia Azreen Adnan, Sharifah Syed Hassan, and Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia, E-mails: noma6@student.monash.edu, thamil.komarasamy@monash.edu, amelia.azreen@monash.edu, sharifah.syedhassan@monash.edu, and vinod.balasubramaniam@monash.edu. Sarahani Harun, Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia, E-mail: sarahani@ukm.edu.my.

Address correspondence to Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia. E-mail: vinod.balasubramaniam@monash.edu
  • 1.

    Shepard DS , Undurraga EA , Halasa YA , 2013. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis 7: e2055.

  • 2.

    Bhatt S et al., 2013. The global distribution and burden of dengue. Nature 496: 504507.

  • 3.

    Tan LY , Komarasamy TV , James W , Balasubramaniam V , 2022. Host molecules regulating neural invasion of Zika virus and drug repurposing strategy. Front Microbiol 13: 743147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Komarasamy TV , Adnan NAA , James W , Balasubramaniam VR , 2022. Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Negl Trop Dis 16: e0010291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Grant A et al., 2016. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19: 882890.

  • 6.

    Su KY , Balasubramaniam V , 2019. Zika virus as oncolytic therapy for brain cancer: Myth or reality? Front Microbiol 10: 2715.

  • 7.

    Tripathi S et al., 2017. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 13: e1006258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Elshahawi H , Syed Hassan S , Balasubramaniam V , 2019. Importance of Zika virus NS5 protein for viral replication. Pathogens 8: 169.

  • 9.

    Guzman MG et al., 2010. Dengue: A continuing global threat. Nat Rev Microbiol 8: S7S16.

  • 10.

    Shah PS et al., 2018. Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175: 19311945.e18.

  • 11.

    Zeng Z , Shi J , Guo X , Mo L , Hu N , Sun J , Wu M , Zhou H , Hu Y , 2018. Full-length genome and molecular characterization of dengue virus serotype 2 isolated from an imported patient from Myanmar. Virol J 15: 131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tham HW , Balasubramaniam VR , Tejo BA , Ahmad H , Hassan SS , 2014. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 6: 50285046.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tai KY , Dhaliwal J , Balasubramaniam V , 2022. Leveraging Mann-Whitney U test on large-scale genetic variation data for analysing malaria genetic markers. Malar J 21: 79.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lee LJ , Komarasamy TV , Adnan NAA , James W , Rmt Balasubramaniam V , 2021. Hide and seek: The interplay between Zika virus and the host immune response. Front Immunol 12: 750365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tham HW , Balasubramaniam VR , Chew MF , Ahmad H , Hassan SS , 2015. Protein-protein interactions between A. aegypti midgut and dengue virus 2: Two-hybrid screens using the midgut cDNA library. J Infect Dev Ctries 9: 13381349.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tham HW , Balasubramaniam V , Ooi MK , Chew MF , 2018. Viral determinants and vector competence of Zika virus transmission. Front Microbiol 9: 1040.

  • 17.

    Balasubramaniam VR , Hong Wai T , Ario Tejo B , Omar AR , Syed Hassan S , 2013. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF. PLoS One 8: e72429.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    WHO , 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization.

  • 19.

    Phuong CX , Nhan NT , Kneen R , Thuy PT , van Thien C , Nga NT , Thuy TT , Solomon T , Stepniewska K , Wills B ; Dong Nai Study Group , 2004. Clinical diagnosis and assessment of severity of confirmed dengue infections in Vietnamese children: Is the World Health Organization classification system helpful? Am J Trop Med Hyg 70: 172179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Deen JL , Harris E , Wills B , Balmaseda A , Hammond SN , Rocha C , Dung NM , Hung NT , Hien TT , Farrar JJ , 2006. The WHO dengue classification and case definitions: Time for a reassessment. Lancet 368: 170173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    WHO Department of Control of Neglected Tropical Diseases (ed), 2009. Dengue Guidelines, for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tayal A , Kabra SK , Lodha R , 2023. Management of dengue: An updated review. Indian J Pediatr 90: 168177.

  • 23.

    Huy NT , Van Giang T , Thuy DH , Kikuchi M , Hien TT , Zamora J , Hirayama K , 2013. Factors associated with dengue shock syndrome: A systematic review and meta-analysis. PLoS Negl Trop Dis 7: e2412.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tan VPK , Ngim CF , Lee EZ , Ramadas A , Pong LY , Ng JI , Hassan SS , Ng XY , Dhanoa A , 2018. The association between obesity and dengue virus (DENV) infection in hospitalised patients. PLoS One 13: e0200698.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Simmons CP , Farrar JJ , Nguyen vV , Wills B , 2012. Dengue. N Engl J Med 366: 14231432.

  • 26.

    Tambyah PA , Ching CS , Sepramaniam S , Ali JM , Armugam A , Jeyaseelan K , 2016. microRNA expression in blood of dengue patients. Ann Clin Biochem 53: 466476.

  • 27.

    Diosa-Toro M , Echavarria-Consuegra L , Flipse J , Fernandez GJ , Kluiver J , van den Berg A , Urcuqui-Inchima S , Smit JM , 2017. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Negl Trop Dis 11: e0005981.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vlachos IS et al., 2015. DIANA-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43: D153D159.

  • 29.

    Su Y , Lin T , Liu C , Cheng C , Han X , Jiang X , 2021. microRNAs, the link between dengue virus and the host genome. Front Microbiol 12: 714409.

  • 30.

    Jiang H et al., 2020. Degradation of microRNA miR-466d-3p by Japanese encephalitis virus NS3 facilitates viral replication and interleukin-1β expression. J Virol 94: e00294-20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Qi Y , Li Y , Zhang L , Huang J , 2013. microRNA expression profiling and bioinformatic analysis of dengue virus-infected peripheral blood mononuclear cells. Mol Med Rep 7: 791798.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    O’Brien J , Hayder H , Zayed Y , Peng C , 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9: 402.

  • 33.

    Ha J , Park C , Park S , 2019. PMAMCA: Prediction of microRNA-disease association utilizing a matrix completion approach. BMC Syst Biol 13: 33.

  • 34.

    Zhang ZN et al., 2013. Transcriptomic analysis of peripheral blood mononuclear cells in rapid progressors in early HIV infection identifies a signature closely correlated with disease progression. Clin Chem 59: 11751186.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Correia CN , Nalpas NC , McLoughlin KE , Browne JA , Gordon SV , MacHugh DE , Shaughnessy RG , 2017. Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol 8: 118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Chen Y , Li L , Zhou Z , Wang N , Zhang CY , Zen K , 2012. A pilot study of serum microRNA signatures as a novel biomarker for occult hepatitis B virus infection. Med Microbiol Immunol (Berl) 201: 389395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Castillo JA , Castrillon JC , Diosa-Toro M , Betancur JG , St Laurent G 3rd , Smit JM , Urcuqui-Inchima S , 2016. Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect Dis 16: 29.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Escalera-Cueto M , Medina-Martinez I , del Angel RM , Berumen-Campos J , Gutierrez-Escolano AL , Yocupicio-Monroy M , 2015. Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res 196: 105112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Zheng Z , Ke X , Wang M , He S , Li Q , Zheng C , Zhang Z , Liu Y , Wang H , 2013. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 87: 56455656.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wang R , Zhang YY , Lu JS , Xia BH , Yang ZX , Zhu XD , Zhou XW , Huang PT , 2017. The highly pathogenic H5N1 influenza A virus down-regulated several cellular microRNAs which target viral genome. J Cell Mol Med 21: 30763086.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Limothai U et al., 2022. Discovery and validation of circulating miRNAs for the clinical prognosis of severe dengue. PLoS Negl Trop Dis 16: e0010836.

  • 42.

    de Oliveira LF et al., 2021. Differential expression analysis and profiling of hepatic miRNA and isomiRNA in dengue hemorrhagic fever. Sci Rep 11: 5554.

  • 43.

    Tsai YT , Chang SY , Lee CN , Kao CL , 2009. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11: 604615.

  • 44.

    Nasirudeen AM , Wong HH , Thien P , Xu S , Lam KP , Liu DX , 2011. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5: e926.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Munoz-Jordan JL , Sanchez-Burgos GG , Laurent-Rolle M , Garcia-Sastre A , 2003. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100: 1433314338.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Morrison J , Garcia-Sastre A , 2014. STAT2 signaling and dengue virus infection. JAK-STAT 3: e27715.

  • 47.

    Lin RJ , Yu HP , Chang BL , Tang WC , Liao CL , Lin YL , 2009. Distinct antiviral roles for human 2′,5′-oligoadenylate synthetase family members against dengue virus infection. J Immunol 183: 80358043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ashour J , Laurent-Rolle M , Shi PY , Garcia-Sastre A , 2009. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83: 54085418.

  • 49.

    Dalrymple NA , Cimica V , Mackow ER , 2015. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. mBio 6: e00553-e15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    He Z et al., 2016. Dengue virus subverts host innate immunity by targeting adaptor protein MAVS. J Virol 90: 72197230.

  • 51.

    Patro ARK , Mohanty S , Prusty BK , Singh DK , Gaikwad S , Saswat T , Chattopadhyay S , Das BK , Tripathy R , Ravindran B , 2019. Cytokine signature associated with disease severity in dengue. Viruses 11: 34.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Appanna R , Wang SM , Ponnampalavanar SA , Lum LC , Sekaran SD , 2012. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells. Am J Trop Med Hyg 87: 936942.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Katzelnick LC , Gresh L , Halloran ME , Mercado JC , Kuan G , Gordon A , Balmaseda A , Harris E , 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358: 929932.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Guzman MG , Vazquez S , 2010. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2: 26492662.

  • 55.

    Trobaugh DW , Klimstra WB , 2017. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med 23: 8093.

  • 56.

    Bruscella P , Bottini S , Baudesson C , Pawlotsky JM , Feray C , Trabucchi M , 2017. Viruses and miRNAs: More friends than foes. Front Microbiol 8: 824.

  • 57.

    Shrivastava S , Steele R , Ray R , Ray RB , 2015. MicroRNAs: Role in hepatitis C virus pathogenesis. Genes Dis 2: 3545.

  • 58.

    Kumari B , Jain P , Das S , Ghosal S , Hazra B , Trivedi AC , Basu A , Chakrabarti J , Vrati S , Banerjee A , 2016. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese encephalitis virus in microglial cells. Sci Rep 6: 20263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Brostoff T , Pesavento PA , Barker CM , Kenney JL , Dietrich EA , Duggal NK , Bosco-Lauth AM , Brault AC , 2016. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice. Vaccine 34: 53665375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bavia L , Mosimann AL , Aoki MN , Duarte Dos Santos CN , 2016. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 13: 84.

  • 61.

    Ouyang X , Jiang X , Gu D , Zhang Y , Kong SK , Jiang C , Xie W , 2016. Dysregulated serum MiRNA profile and promising biomarkers in dengue-infected patients. Int J Med Sci 13: 195205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Saini J , Bandyopadhyay B , Pandey AD , Ramachandran VG , Das S , Sood V , Banerjee A , Vrati S , 2020. High-throughput RNA sequencing analysis of plasma samples reveals circulating microRNA signatures with biomarker potential in dengue disease progression. mSystems 5: e00724-20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Hapugaswatta H , Amarasena P , Premaratna R , Seneviratne KN , Jayathilaka N , 2020. Differential expression of microRNA, miR-150 and enhancer of zeste homolog 2 (EZH2) in peripheral blood cells as early prognostic markers of severe forms of dengue. J Biomed Sci 27: 25.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Martin A , Ochagavia ME , Rabasa LC , Miranda J , Fernandez-de-Cossio J , Bringas R , 2010. BisoGenet: A new tool for gene network building, visualization and analysis. BMC Bioinformatics 11: 91.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Fu X , Mao X , Wang Y , Ding X , Li Y , 2017. Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncol Rep 38: 18511856.