Cross Talk between MicroRNAs and Dengue Virus

Nur Omar Macha Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Nur Omar Macha in
Current site
Google Scholar
PubMed
Close
,
Thamil Vaani Komarasamy Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Thamil Vaani Komarasamy in
Current site
Google Scholar
PubMed
Close
,
Sarahani Harun Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia

Search for other papers by Sarahani Harun in
Current site
Google Scholar
PubMed
Close
,
Nur Amelia Azreen Adnan Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Nur Amelia Azreen Adnan in
Current site
Google Scholar
PubMed
Close
,
Sharifah Syed Hassan Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Sharifah Syed Hassan in
Current site
Google Scholar
PubMed
Close
, and
Vinod R. M. T. Balasubramaniam Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia;

Search for other papers by Vinod R. M. T. Balasubramaniam in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.

Author Notes

Authors’ addresses: Nur Omar Macha, Thamil Vaani Komarasamy, Nur Amelia Azreen Adnan, Sharifah Syed Hassan, and Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia, E-mails: noma6@student.monash.edu, thamil.komarasamy@monash.edu, amelia.azreen@monash.edu, sharifah.syedhassan@monash.edu, and vinod.balasubramaniam@monash.edu. Sarahani Harun, Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia, E-mail: sarahani@ukm.edu.my.

Address correspondence to Vinod R. M. T. Balasubramaniam, Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia. E-mail: vinod.balasubramaniam@monash.edu
  • 1.

    Shepard DS , Undurraga EA , Halasa YA , 2013. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis 7: e2055.

  • 2.

    Bhatt S et al., 2013. The global distribution and burden of dengue. Nature 496: 504507.

  • 3.

    Tan LY , Komarasamy TV , James W , Balasubramaniam V , 2022. Host molecules regulating neural invasion of Zika virus and drug repurposing strategy. Front Microbiol 13: 743147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Komarasamy TV , Adnan NAA , James W , Balasubramaniam VR , 2022. Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Negl Trop Dis 16: e0010291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Grant A et al., 2016. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19: 882890.

  • 6.

    Su KY , Balasubramaniam V , 2019. Zika virus as oncolytic therapy for brain cancer: Myth or reality? Front Microbiol 10: 2715.

  • 7.

    Tripathi S et al., 2017. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 13: e1006258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Elshahawi H , Syed Hassan S , Balasubramaniam V , 2019. Importance of Zika virus NS5 protein for viral replication. Pathogens 8: 169.

  • 9.

    Guzman MG et al., 2010. Dengue: A continuing global threat. Nat Rev Microbiol 8: S7S16.

  • 10.

    Shah PS et al., 2018. Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175: 19311945.e18.

  • 11.

    Zeng Z , Shi J , Guo X , Mo L , Hu N , Sun J , Wu M , Zhou H , Hu Y , 2018. Full-length genome and molecular characterization of dengue virus serotype 2 isolated from an imported patient from Myanmar. Virol J 15: 131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tham HW , Balasubramaniam VR , Tejo BA , Ahmad H , Hassan SS , 2014. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 6: 50285046.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tai KY , Dhaliwal J , Balasubramaniam V , 2022. Leveraging Mann-Whitney U test on large-scale genetic variation data for analysing malaria genetic markers. Malar J 21: 79.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lee LJ , Komarasamy TV , Adnan NAA , James W , Rmt Balasubramaniam V , 2021. Hide and seek: The interplay between Zika virus and the host immune response. Front Immunol 12: 750365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tham HW , Balasubramaniam VR , Chew MF , Ahmad H , Hassan SS , 2015. Protein-protein interactions between A. aegypti midgut and dengue virus 2: Two-hybrid screens using the midgut cDNA library. J Infect Dev Ctries 9: 13381349.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tham HW , Balasubramaniam V , Ooi MK , Chew MF , 2018. Viral determinants and vector competence of Zika virus transmission. Front Microbiol 9: 1040.

  • 17.

    Balasubramaniam VR , Hong Wai T , Ario Tejo B , Omar AR , Syed Hassan S , 2013. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF. PLoS One 8: e72429.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    WHO , 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization.

  • 19.

    Phuong CX , Nhan NT , Kneen R , Thuy PT , van Thien C , Nga NT , Thuy TT , Solomon T , Stepniewska K , Wills B ; Dong Nai Study Group , 2004. Clinical diagnosis and assessment of severity of confirmed dengue infections in Vietnamese children: Is the World Health Organization classification system helpful? Am J Trop Med Hyg 70: 172179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Deen JL , Harris E , Wills B , Balmaseda A , Hammond SN , Rocha C , Dung NM , Hung NT , Hien TT , Farrar JJ , 2006. The WHO dengue classification and case definitions: Time for a reassessment. Lancet 368: 170173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    WHO Department of Control of Neglected Tropical Diseases (ed), 2009. Dengue Guidelines, for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tayal A , Kabra SK , Lodha R , 2023. Management of dengue: An updated review. Indian J Pediatr 90: 168177.

  • 23.

    Huy NT , Van Giang T , Thuy DH , Kikuchi M , Hien TT , Zamora J , Hirayama K , 2013. Factors associated with dengue shock syndrome: A systematic review and meta-analysis. PLoS Negl Trop Dis 7: e2412.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tan VPK , Ngim CF , Lee EZ , Ramadas A , Pong LY , Ng JI , Hassan SS , Ng XY , Dhanoa A , 2018. The association between obesity and dengue virus (DENV) infection in hospitalised patients. PLoS One 13: e0200698.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Simmons CP , Farrar JJ , Nguyen vV , Wills B , 2012. Dengue. N Engl J Med 366: 14231432.

  • 26.

    Tambyah PA , Ching CS , Sepramaniam S , Ali JM , Armugam A , Jeyaseelan K , 2016. microRNA expression in blood of dengue patients. Ann Clin Biochem 53: 466476.

  • 27.

    Diosa-Toro M , Echavarria-Consuegra L , Flipse J , Fernandez GJ , Kluiver J , van den Berg A , Urcuqui-Inchima S , Smit JM , 2017. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Negl Trop Dis 11: e0005981.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vlachos IS et al., 2015. DIANA-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43: D153D159.

  • 29.

    Su Y , Lin T , Liu C , Cheng C , Han X , Jiang X , 2021. microRNAs, the link between dengue virus and the host genome. Front Microbiol 12: 714409.

  • 30.

    Jiang H et al., 2020. Degradation of microRNA miR-466d-3p by Japanese encephalitis virus NS3 facilitates viral replication and interleukin-1β expression. J Virol 94: e00294-20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Qi Y , Li Y , Zhang L , Huang J , 2013. microRNA expression profiling and bioinformatic analysis of dengue virus-infected peripheral blood mononuclear cells. Mol Med Rep 7: 791798.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    O’Brien J , Hayder H , Zayed Y , Peng C , 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9: 402.

  • 33.

    Ha J , Park C , Park S , 2019. PMAMCA: Prediction of microRNA-disease association utilizing a matrix completion approach. BMC Syst Biol 13: 33.

  • 34.

    Zhang ZN et al., 2013. Transcriptomic analysis of peripheral blood mononuclear cells in rapid progressors in early HIV infection identifies a signature closely correlated with disease progression. Clin Chem 59: 11751186.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Correia CN , Nalpas NC , McLoughlin KE , Browne JA , Gordon SV , MacHugh DE , Shaughnessy RG , 2017. Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol 8: 118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Chen Y , Li L , Zhou Z , Wang N , Zhang CY , Zen K , 2012. A pilot study of serum microRNA signatures as a novel biomarker for occult hepatitis B virus infection. Med Microbiol Immunol (Berl) 201: 389395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Castillo JA , Castrillon JC , Diosa-Toro M , Betancur JG , St Laurent G 3rd , Smit JM , Urcuqui-Inchima S , 2016. Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect Dis 16: 29.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Escalera-Cueto M , Medina-Martinez I , del Angel RM , Berumen-Campos J , Gutierrez-Escolano AL , Yocupicio-Monroy M , 2015. Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res 196: 105112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Zheng Z , Ke X , Wang M , He S , Li Q , Zheng C , Zhang Z , Liu Y , Wang H , 2013. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 87: 56455656.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wang R , Zhang YY , Lu JS , Xia BH , Yang ZX , Zhu XD , Zhou XW , Huang PT , 2017. The highly pathogenic H5N1 influenza A virus down-regulated several cellular microRNAs which target viral genome. J Cell Mol Med 21: 30763086.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Limothai U et al., 2022. Discovery and validation of circulating miRNAs for the clinical prognosis of severe dengue. PLoS Negl Trop Dis 16: e0010836.

  • 42.

    de Oliveira LF et al., 2021. Differential expression analysis and profiling of hepatic miRNA and isomiRNA in dengue hemorrhagic fever. Sci Rep 11: 5554.

  • 43.

    Tsai YT , Chang SY , Lee CN , Kao CL , 2009. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11: 604615.

  • 44.

    Nasirudeen AM , Wong HH , Thien P , Xu S , Lam KP , Liu DX , 2011. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5: e926.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Munoz-Jordan JL , Sanchez-Burgos GG , Laurent-Rolle M , Garcia-Sastre A , 2003. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100: 1433314338.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Morrison J , Garcia-Sastre A , 2014. STAT2 signaling and dengue virus infection. JAK-STAT 3: e27715.

  • 47.

    Lin RJ , Yu HP , Chang BL , Tang WC , Liao CL , Lin YL , 2009. Distinct antiviral roles for human 2′,5′-oligoadenylate synthetase family members against dengue virus infection. J Immunol 183: 80358043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ashour J , Laurent-Rolle M , Shi PY , Garcia-Sastre A , 2009. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83: 54085418.

  • 49.

    Dalrymple NA , Cimica V , Mackow ER , 2015. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. mBio 6: e00553-e15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    He Z et al., 2016. Dengue virus subverts host innate immunity by targeting adaptor protein MAVS. J Virol 90: 72197230.

  • 51.

    Patro ARK , Mohanty S , Prusty BK , Singh DK , Gaikwad S , Saswat T , Chattopadhyay S , Das BK , Tripathy R , Ravindran B , 2019. Cytokine signature associated with disease severity in dengue. Viruses 11: 34.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Appanna R , Wang SM , Ponnampalavanar SA , Lum LC , Sekaran SD , 2012. Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cells. Am J Trop Med Hyg 87: 936942.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Katzelnick LC , Gresh L , Halloran ME , Mercado JC , Kuan G , Gordon A , Balmaseda A , Harris E , 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358: 929932.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Guzman MG , Vazquez S , 2010. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2: 26492662.

  • 55.

    Trobaugh DW , Klimstra WB , 2017. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med 23: 8093.

  • 56.

    Bruscella P , Bottini S , Baudesson C , Pawlotsky JM , Feray C , Trabucchi M , 2017. Viruses and miRNAs: More friends than foes. Front Microbiol 8: 824.

  • 57.

    Shrivastava S , Steele R , Ray R , Ray RB , 2015. MicroRNAs: Role in hepatitis C virus pathogenesis. Genes Dis 2: 3545.

  • 58.

    Kumari B , Jain P , Das S , Ghosal S , Hazra B , Trivedi AC , Basu A , Chakrabarti J , Vrati S , Banerjee A , 2016. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese encephalitis virus in microglial cells. Sci Rep 6: 20263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Brostoff T , Pesavento PA , Barker CM , Kenney JL , Dietrich EA , Duggal NK , Bosco-Lauth AM , Brault AC , 2016. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice. Vaccine 34: 53665375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bavia L , Mosimann AL , Aoki MN , Duarte Dos Santos CN , 2016. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J 13: 84.

  • 61.

    Ouyang X , Jiang X , Gu D , Zhang Y , Kong SK , Jiang C , Xie W , 2016. Dysregulated serum MiRNA profile and promising biomarkers in dengue-infected patients. Int J Med Sci 13: 195205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Saini J , Bandyopadhyay B , Pandey AD , Ramachandran VG , Das S , Sood V , Banerjee A , Vrati S , 2020. High-throughput RNA sequencing analysis of plasma samples reveals circulating microRNA signatures with biomarker potential in dengue disease progression. mSystems 5: e00724-20.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Hapugaswatta H , Amarasena P , Premaratna R , Seneviratne KN , Jayathilaka N , 2020. Differential expression of microRNA, miR-150 and enhancer of zeste homolog 2 (EZH2) in peripheral blood cells as early prognostic markers of severe forms of dengue. J Biomed Sci 27: 25.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Martin A , Ochagavia ME , Rabasa LC , Miranda J , Fernandez-de-Cossio J , Bringas R , 2010. BisoGenet: A new tool for gene network building, visualization and analysis. BMC Bioinformatics 11: 91.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Fu X , Mao X , Wang Y , Ding X , Li Y , 2017. Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncol Rep 38: 18511856.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Zhao B et al., 2014. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 342: 4351.

  • 67.

    Mulholland EJ , Green WP , Buckley NE , McCarthy HO , 2019. Exploring the potential of microRNA Let-7c as a therapeutic for prostate cancer. Mol Ther Nucleic Acids 18: 927937.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Repetto E , Briata P , Kuziner N , Harfe BD , McManus MT , Gherzi R , Rosenfeld MG , Trabucchi M , 2012. Let-7b/c enhance the stability of a tissue-specific mRNA during mammalian organogenesis as part of a feedback loop involving KSRP. PLoS Genet 8: e1002823.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Degrauwe N , Schlumpf TB , Janiszewska M , Martin P , Cauderay A , Provero P , Riggi N , Suva ML , Paro R , Stamenkovic I , 2016. The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep 15: 16341647.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Wagner S , Ngezahayo A , Murua Escobar H , Nolte I , 2014. Role of miRNA let-7 and its major targets in prostate cancer. BioMed Res Int 2014: 376326.

  • 71.

    Ma YJ et al., 2012. Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J Cell Mol Med 16: 25392546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Zhou B et al., 2017. Hsa-let-7c-5p augments enterovirus 71 replication through viral subversion of cell signaling in rhabdomyosarcoma cells. Cell Biosci 7: 7.

  • 73.

    Nacken W , Anhlan D , Hrincius ER , Mostafa A , Wolff T , Sadewasser A , Pleschka S , Ehrhardt C , Ludwig S , 2014. Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1. J Virol 88: 88438852.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Kurapati S , Sadaoka T , Rajbhandari L , Jagdish B , Shukla P , Ali MA , Kim YJ , Lee G , Cohen JI , Venkatesan A , 2017. Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol 91: e00640-17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Haas DA et al., 2013. The inflammatory kinase MAP4K4 promotes reactivation of Kaposi’s sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells. PLoS Pathog 9: e1003737.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Peng H et al., 2014. Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiol 14: 147.

  • 77.

    Heiss BL , Maximova OA , Pletnev AG , 2011. Insertion of microRNA targets into the flavivirus genome alters its highly neurovirulent phenotype. J Virol 85: 14641472.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Tseng CK , Lin CK , Wu YH , Chen YH , Chen WC , Young KC , Lee JC , 2016. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep 6: 32176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Yu H , Lu Y , Li Z , Wang Q , 2014. microRNA-133: Expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets 15: 817828.

  • 80.

    Huang Y , Wu Y , Dong J , Han D , Yang S , Jiang L , 2016. MicroRNA-133a-3p exerts inhibitory effects on gallbladder carcinoma via targeting RBPJ. Am J Cancer Res 6: 24482462.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Alcaraz-Estrada SL , Manzano MI , Del Angel RM , Levis R , Padmanabhan R , 2010. Construction of a dengue virus type 4 reporter replicon and analysis of temperature-sensitive mutations in non-structural proteins 3 and 5. J Gen Virol 91: 27132718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Anwar A , Leong KM , Ng ML , Chu JJ , Garcia-Blanco MA , 2009. The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284: 1702117029.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Sawicka K , Bushell M , Spriggs KA , Willis AE , 2008. Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein. Biochem Soc Trans 36: 641647.

  • 84.

    Xue J et al., 2016. MEAN inhibits hepatitis C virus replication by interfering with a polypyrimidine tract-binding protein. J Cell Mol Med 20: 12551265.

  • 85.

    Jia H , Zhao Y , Li T , Zhang Y , Zhu D , 2017. miR-30e is negatively regulated by myostatin in skeletal muscle and is functionally related to fiber-type composition. Acta Biochim Biophys Sin (Shanghai) 49: 392399.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Wang J et al., 2013. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis 4: e845.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Egan SM , Karasik E , Ellis L , Gollnick SO , 2017. miR-30e* is overexpressed in prostate cancer and promotes NF-kappaB-mediated proliferation and tumor growth. Oncotarget 8: 6762667638.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Liu MM , Li Z , Han XD , Shi JH , Tu DY , Song W , Zhang J , Qiu XL , Ren Y , Zhen LL , 2017. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in breast cancer. Sci Rep 7: 15929.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Li D , Yang H , Ma J , Luo S , Chen S , Gu Q , 2018. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson’s disease by targeting Nlrp3. Hum Cell 31: 106115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Makkoch J , Poomipak W , Saengchoowong S , Khongnomnan K , Praianantathavorn K , Jinato T , Poovorawan Y , Payungporn S , 2016. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Exp Biol Med (Maywood) 241: 409420.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Kozak RA et al., 2017. MicroRNA and mRNA dysregulation in astrocytes infected with Zika virus. Viruses 9: 297.

  • 92.

    Scagnolari C , Zingariello P , Vecchiet J , Selvaggi C , Racciatti D , Taliani G , Riva E , Pizzigallo E , Antonelli G , 2010. Differential expression of interferon-induced microRNAs in patients with chronic hepatitis C virus infection treated with pegylated interferon alpha. Virol J 7: 311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Zhu X et al., 2014. MicroRNA-30e* suppresses dengue virus replication by promoting NF-kappaB-dependent IFN production. PLoS Negl Trop Dis 8: e3088.

  • 94.

    Elliott CL , Allport VC , Loudon JA , Wu GD , Bennett PR , 2001. Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 7: 787790.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Cao S , Zhang X , Edwards JP , Mosser DM , 2006. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 281: 2604126050.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Lee YR , Liu MT , Lei HY , Liu CC , Wu JM , Tung YC , Lin YS , Yeh TM , Chen SH , Liu HS , 2006. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 87: 36233630.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Huang J , Liang W , Chen S , Zhu Y , Chen H , Mok CKP , Zhou Y , 2018. Serum cytokine profiles in patients with dengue fever at the acute infection phase. Dis Markers 2018: 8403937.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Tan LY , Komarasamy TV , Rmt Balasubramaniam V , 2021. Hyperinflammatory immune response and COVID-19: A double edged sword. Front Immunol 12: 742941.

  • 99.

    Meena AA et al., 2019. Increase of plasma TNF-alpha is associated with decreased levels of blood platelets in clinical dengue infection. Viral Immunol 33: 5460.

  • 100.

    Kurane I , 2007. Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis 30: 329340.

  • 101.

    Braga EL , Moura P , Pinto LM , Ignacio SR , Oliveira MJ , Cordeiro MT , Kubelka CF , 2001. Detection of circulant tumor necrosis factor-alpha, soluble tumor necrosis factor p75 and interferon-gamma in Brazilian patients with dengue fever and dengue hemorrhagic fever. Mem Inst Oswaldo Cruz 96: 229232.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Yen YT , Chen HC , Lin YD , Shieh CC , Wu-Hsieh BA , 2008. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82: 1231212324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Chan YK , Huang IC , Farzan M , 2012. IFITM proteins restrict antibody-dependent enhancement of dengue virus infection. PLoS One 7: e34508.

  • 104.

    Kanlaya R , Pattanakitsakul SN , Sinchaikul S , Chen ST , Thongboonkerd V , 2010. The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res 9: 49604971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Iacona JR , Lutz CS , 2019. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip Rev RNA 10: e1533.

  • 106.

    Min SK , Jung SY , Kang HK , Park SA , Lee JH , Kim MJ , Min BM , 2017. Functional diversity of miR-146a-5p and TRAF6 in normal and oral cancer cells. Int J Oncol 51: 15411552.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Wilczynski M , Zytko E , Szymanska B , Dzieniecka M , Nowak M , Danielska J , Stachowiak G , Wilczynski JR , 2017. Expression of miR-146a in patients with ovarian cancer and its clinical significance. Oncol Lett 14: 32073214.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Hou J , Wang P , Lin L , Liu X , Ma F , An H , Wang Z , Cao X , 2009. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183: 21502158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Sharma N , Verma R , Kumawat KL , Basu A , Singh SK , 2015. miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. J Neuroinflammation 12: 30.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Lofgren SE et al., 2012. Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun 13: 268274.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Hu R , O’Connell RM , 2013. MicroRNA control in the development of systemic autoimmunity. Arthritis Res Ther 15: 202.

  • 112.

    Li L , Chen XP , Li YJ , 2010. MicroRNA-146a and human disease. Scand J Immunol 71: 227231.

  • 113.

    Soonthornvacharin S et al., 2017. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol 2: 17022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Deng M , Du G , Zhao J , Du X , 2017. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch Virol 162: 14951505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Paudel YN , Angelopoulou E , Piperi C , Balasubramaniam VRMT , Othman I , Shaikh MF , 2019. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol 858: 172487.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Wu S , He L , Li Y , Wang T , Feng L , Jiang L , Zhang P , Huang X , 2013. miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. J Infect 67: 329341.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Pu J , Wu S , Xie H , Li Y , Yang Z , Wu X , Huang X , 2017. miR-146a inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 162: 36453659.

  • 118.

    Komarasamy TV , Adnan NAA , James W , Balasubramaniam V , 2022. Zika virus neuropathogenesis: The different brain cells, host factors and mechanisms involved. Front Immunol 13: 773191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Castillo Ramirez JA , Urcuqui-Inchima S , 2015. Dengue virus control of type I IFN responses: A history of manipulation and control. J Interferon Cytokine Res 35: 421430.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Walsh MC , Lee J , Choi Y , 2015. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev 266: 7292.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Kobayashi T , Walsh MC , Choi Y , 2004. The role of TRAF6 in signal transduction and the immune response. Microbes Infect 6: 13331338.

  • 122.

    Panda M , Kalita E , Singh S , Kumar K , Rao A , Prajapati VK , 2022. MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies. Life Sci 305: 120761.

  • 123.

    Hussein HAM , Akula SM , 2017. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep 7: 17972.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Li W , Cheng P , Nie S , Cui W , 2016. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells. Neuropsychiatr Dis Treat 12: 24112417.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Janssen HL et al., 2013. Treatment of HCV infection by targeting microRNA. N Engl J Med 368: 16851694.

  • 126.

    Blanco-Melo D et al., 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181: 10361045.e9.

  • 127.

    Talarico LB et al., 2017. Characterization of type I interferon responses in dengue and severe dengue in children in Paraguay. J Clin Virol 97: 1017.

Past two years Past Year Past 30 Days
Abstract Views 2522 2090 362
Full Text Views 298 289 40
PDF Downloads 141 132 19
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save