Burden of Submicroscopic Plasmodium Infections and Detection of kelch13 Mutant Parasites in Military and Civilian Populations in Papua New Guinea

Paul A. Pickering Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia;

Search for other papers by Paul A. Pickering in
Current site
Google Scholar
PubMed
Close
,
Ivor Harris Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia;

Search for other papers by Ivor Harris in
Current site
Google Scholar
PubMed
Close
,
David Smith Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia;

Search for other papers by David Smith in
Current site
Google Scholar
PubMed
Close
,
Fiona McCallum Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia;

Search for other papers by Fiona McCallum in
Current site
Google Scholar
PubMed
Close
,
Peter Kaminiel Papua New Guinea Defence Force Health Service, Port Moresby, Papua New Guinea

Search for other papers by Peter Kaminiel in
Current site
Google Scholar
PubMed
Close
,
Alyson Auliff Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia;

Search for other papers by Alyson Auliff in
Current site
Google Scholar
PubMed
Close
, and
Qin Cheng Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia;

Search for other papers by Qin Cheng in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Malaria remains a major public health problem in Papua New Guinea (PNG) and an important force health protection issue for both PNG and Australian Defence Forces. To investigate the malaria burden in the military and civilians residing on military bases, a cross-sectional survey was conducted in April 2019 at three military bases in Wewak, Manus Island, and Vanimo, PNG. A total of 1,041 participants were enrolled; 235 military personnel from three bases and 806 civilians from Wewak and Vanimo. Polymerase chain reaction (PCR) revealed an overall high prevalence of Plasmodium infection in both the military and civilians. Among the military, the infection prevalence was significantly higher in Wewak (35.5%) and Vanimo (33.3%) bases than on Manus Island (11.8%). Among civilians, children (<16 years old) had significantly higher odds of being PCR positive than adults (≥16 years old). At Wewak and Vanimo, Plasmodium vivax accounted for 85.4%, 78.2%, and 66.2% of infections in military, children, and adult populations. Overall, 87.3%, 41.3%, and 61.3% of Plasmodium infections in the military, children, and adults, respectively, were detected only by PCR, not by microscopy (submicroscopic [SM] infections). Children had a significantly lower proportion of SM infections than adults and Papua New Guinea Defence Force personnel. Infection status was not associated with hemoglobin levels in these populations at the time of the survey. Mutant kelch13 (C580Y) parasites were identified in 5/68 Plasmodium falciparum–infected individuals. The survey results indicate extensive malaria transmission on these bases, especially in Wewak and Vanimo. More intensified interventions are required to reduce malaria transmission on PNG military bases.

Author Notes

Financial support: This work was supported by the Australian Defence Organization’s International Policy Division. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Disclosure: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of Defence, Australia and the PNG Defence Force. Ethical approvals for the conduct of the survey and laboratory tests were granted by the Departments of Defence and Veterans’ Affairs Human Research Ethics Committee (DDVA HREC 084-18) and the Medical Research Advisory Committee of PNG (MRAC No: 18.21).

Data availability: Data generated from this study are included in the published article or as supplementary information. Data are also available from the corresponding author on request.

Authors’ addresses: Paul A. Pickering, Ivor Harris, David Smith, Fiona McCallum, Alyson Auliff, and Qin Cheng, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia, E-mails: paul.pickering@defence.gov.au, ivorharris@hotmail.com, david.smith77@defence.gov.au, fiona.mccallum@defence.gov.au, alyson.auliff@defence.gov.au, and qin.cheng@defence.gov.au. Peter Kaminiel, Papua New Guinea Defence Force Health Service, Port Moresby, Papua New Guinea, E-mail: pngdfdhs007@gmail.com.

Address correspondence to Qin Cheng, Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Dr., Gallipoli Barracks, Enoggera, Brisbane, QLD 4051, Australia. E-mail: qin.cheng@defence.gov.au
  • 1.

    Müller I , Bockarie M , Alpers M , Smith T , 2003. The epidemiology of malaria in Papua New Guinea. Trends Parasitol 19: 253259.

  • 2.

    Betuela I , Maraga S , Hetzel MW , Tandrapah T , Sie A , Yala S , Kundi J , Siba P , Reeder JC , Mueller I , 2012. Epidemiology of malaria in the Papua New Guinean highlands. Trop Med Int Health 17: 11811191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ford E , 1950. The malaria problem in Australia and the Australian Pacific territories. Med J Aust 1: 749760.

  • 4.

    Black RH , 1956. The epidemiology of malaria in the southwest Pacific: changes associated with increasing European contact. Oceania 27: 136142.

  • 5.

    Peters W , Standfast H , 1957. Report on a malaria survey in the Sepik district. Med J Aust 44: 861868.

  • 6.

    Mehlotra RK , Lorry K , Kastens W , Miller SM , Alpers MP , Bockarie M , Kazura JW , Zimmerman PA , 2000. Random distribution of mixed species malaria infections in Papua New Guinea. Am J Trop Med Hyg 62: 225231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hetzel MW , Morris H , Tarongka N , Barnadas C , Pulford J , Makita L , Siba PM , Mueller I , 2015. Prevalence of malaria across Papua New Guinea after initial roll-out of insecticide-treated mosquito nets. Trop Med Int Health 20: 17451755.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mueller I , Widmer S , Michel D , Maraga S , McNamara DT , Kiniboro B , Sie A , Smith TA , Zimmerman PA , 2009. High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea. Malar J 8: 41.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cooper RD , Waterson DG , Frances SP , Beebe NW , Pluess B , Sweeney AW , 2009. Malaria vectors of Papua New Guinea. Int J Parasitol 39: 14951501.

  • 10.

    Black RH , 1955. Malaria in the South-West Pacific. Noumea, New Caledonia: South Pacific Commission.

  • 11.

    Spencer M , 1992. The history of malaria control in the southwest Pacific region, with particular reference to Papua New Guinea and the Solomon Islands. P N G Med J 35: 3366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Breinl A , 1915. On the occurrence and prevalence of diseases in British New Guinea. Ann Trop Med Parasitol 9: 285334.

  • 13.

    Parkinson A , 1974. Malaria in Papua New Guinea 1973. P N G Med J 17: 816.

  • 14.

    Crane G , Gibson D , Verrall J , Barker-Hudson P , Barker-Hudson BE , Charlwood D , Heywood P , 1985. Malaria and tropical splenomegaly syndrome in the Anga of Morobe Province. P N G Med J 28: 2734.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hetzel MWS , Saweri OPM , Kuadima JJ , Smith I , Ura Y , Tandrapah A , Jamea-Maiasa S , Siba PM , Pulford J , 2018. Papua New Guinea Malaria Indicator Survey 2016–2017: Malaria Prevention, Infection, and Treatment. Goroka, Papua New Guinea: Papua New Guinea Institute of Medical Research.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hetzel MW et al., 2017. Insecticide-treated nets and malaria prevalence, Papua New Guinea, 2008–2014. Bull World Health Organ 95: 695705B.

  • 17.

    WHO , 2022. World Malaria Report 2022. Geneva, Switzerland: World Health Organization.

  • 18.

    Koepfli C et al., 2017. Sustained malaria control over an 8-year period in Papua New Guinea: the challenge of low-density asymptomatic Plasmodium infections. J Infect Dis 216: 14341443.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Vinit R et al., 2020. Decreased bioefficacy of long-lasting insecticidal nets and the resurgence of malaria in Papua New Guinea. Nat Commun 11: 3646.

  • 20.

    Burdam FH et al., 2016. Asymptomatic vivax and falciparum parasitaemia with helminth co-infection: major risk factors for anaemia in early life. PLoS One 11: e0160917.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pava Z et al., 2016. Submicroscopic and asymptomatic Plasmodium parasitaemia associated with significant risk of anaemia in Papua, Indonesia. PLoS One 11: e0165340.

  • 22.

    Chourasia MK , Raghavendra K , Bhatt RM , Swain DK , Valecha N , Kleinschmidt I , 2017. Burden of asymptomatic malaria among a tribal population in a forested village of central India: a hidden challenge for malaria control in India. Public Health 147: 9297.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sharma V , Choudhury D , Ansari M , Malhotra M , Menon P , Razdan R , Batra C , 1983. Studies on the true incidence of malaria in Kharkhoda (district Sonepat, Haryana) and Kichha (district Nainital, UP) primary health centres. Indian J Malariol 20: 2134.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Okell LC , Ghani AC , Lyons E , Drakeley CJ , 2009. Submicroscopic infection in Plasmodium falciparum–endemic populations: a systematic review and meta-analysis. J Infect Dis 200: 15091517.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cheng Q , Cunningham J , Gatton ML , 2015. Systematic review of sub-microscopic P. vivax infections: prevalence and determining factors. PLoS Negl Trop Dis 9: e3413.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nwakanma D , Kheir A , Sowa M , Dunyo S , Jawara M , Pinder M , Milligan P , Walliker D , Babiker HA , 2008. High gametocyte complexity and mosquito infectivity of Plasmodium falciparum in the Gambia. Int J Parasitol 38: 219227.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Coleman RE , Kumpitak C , Ponlawat A , Maneechai N , Phunkitchar V , Rachapaew N , Zollner G , Sattabongkot J , 2004. Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. J Med Entomol 41: 201208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Noedl H , Se Y , Schaecher K , Smith BL , Socheat D , Fukuda MM , 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620.

  • 29.

    Dondorp AM et al., 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467.

  • 30.

    Miotto O et al., 2020. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLoS Pathog 16: e1009133.

  • 31.

    Ariey F et al., 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055.

  • 32.

    Phyo AP et al., 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 19601966.

  • 33.

    Takala-Harrison S et al., 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211: 670679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Chenet SM et al., 2016. Independent emergence of the Plasmodium falciparum Kelch propeller domain mutant allele C580Y in Guyana. J Infect Dis 213: 14721475.

  • 35.

    Mathieu LC et al., 2020. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife 12: e51015.

  • 36.

    Prosser C , Meyer W , Ellis J , Lee R , 2018. Resistance screening and trend analysis of imported falciparum malaria in NSW, Australia (2010–2016). PLoS One 13: e0197369.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    McCallum F , Mond K , Cheng Q , Furuya-Kanamori L , Auliff A , Kaminiel P , Team APHSS , 2023. A health survey revealing prevalence of vector-borne diseases and tuberculosis in Papua New Guinea Defence Force personnel and families. Am J Trop Med Hyg 109: 10861094.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Padley D , Moody AH , Chiodini PL , Saldanha J , 2003. Use of a rapid, single-round, multiplex PCR to detect malarial parasites and identify the species present. Ann Trop Med Parasitol 97: 131137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Harris I et al., 2010. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J 9: 254.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mfuh KO , Achonduh-Atijegbe OA , Bekindaka ON , Esemu LF , Mbakop CD , Gandhi K , Leke RGF , Taylor DW , Nerurkar VR , 2019. A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria. Malar J 18: 73.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Wu L , van den Hoogen LL , Slater H , Walker PGT , Ghani AC , Drakeley CJ , Okell LC , 2015. Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature 528: S86S93.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Genton B , al-Yaman F , Beck HP , Hii J , Mellor S , Narara A , Gibson N , Smith T , Alpers MP , 1995. The epidemiology of malaria in the Wosera area, East Sepik Province, Papua New Guinea, in preparation for vaccine trials. I. Malariometric indices and immunity. Ann Trop Med Parasitol 89: 359376.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kattenberg JH et al., 2020. The epidemiology of Plasmodium falciparum and Plasmodium vivax in East Sepik Province, Papua New Guinea, pre- and post-implementation of national malaria control efforts. Malar J 19: 198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Okell LC , Bousema T , Griffin JT , Ouédraogo AL , Ghani AC , Drakeley CJ , 2012. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Sattabongkot J , Maneechai N , Phunkitchar V , Eikarat N , Khuntirat B , Sirichaisinthop J , Burge R , Coleman RE , 2003. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg 69: 529535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Surit T , Sripoorote P , Kumpitak C , Suansomjit C , Maneechai N , Cui L , Sattabongkot J , Roobsoong W , Nguitragool W , 2023. Transmission efficiency of Plasmodium vivax at low parasitaemia. Malar J 22: 22.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Papua New Guinea Institute of Medical Research (PNGIMR) , 2021. Papua New Guinea Malaria Indicator Surveys (2008 through 2020). Available at: https://www.malariasurveys.org/surveys.cfm. Accessed May 2022.

    • PubMed
    • Export Citation
  • 48.

    Crane GG , Pryor DS , 1971. Malaria and the tropical splenomegaly syndrome in New Guinea. Trans R Soc Trop Med Hyg 65: 315324.

  • 49.

    Betuela I et al., 2012. Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 1–5 years of age. J Infect Dis 206: 17711780.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Robinson LJ et al., 2015. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. PLoS Med 12: e1001891.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Price RN , Simpson JA , Nosten F , Luxemburger C , Hkirjaroen L , ter Kuile F , Chongsuphajaisiddhi T , White NJ , 2001. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg 65: 614622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Dondorp AM , Angus BJ , Chotivanich K , Silamut K , Ruangveerayuth R , Hardeman MR , Kager PA , Vreeken J , White NJ , 1999. Red blood cell deformability as a predictor of anemia in severe falciparum malaria. Am J Trop Med Hyg 60: 733737.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Collins WE , Jeffery GM , Roberts JM , 2003. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am J Trop Med Hyg 68: 410412.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Handayani S et al., 2009. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J Infect Dis 199: 445450.

  • 55.

    Douglas NM , Anstey NM , Buffet PA , Poespoprodjo JR , Yeo TW , White NJ , Price RN , 2012. The anaemia of Plasmodium vivax malaria. Malar J 11: 135.

  • 56.

    Lin TF , Huang JN , Cash HL , 2017. Comprehensive review of preschool age anemia in the Pacific Island jurisdictions. Hawaii J Med Public Health 76: 331336.

  • 57.

    Ladeia-Andrade S , Ferreira MU , de Carvalho ME , Curado I , Coura JR , 2009. Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. Am J Trop Med Hyg 80: 452459.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Whitehead RD Jr. , Mei Z , Mapango C , Jefferds MED , 2019. Methods and analyzers for hemoglobin measurement in clinical laboratories and field settings. Ann N Y Acad Sci 1450: 147171.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Yoshida N , Yamauchi M , Morikawa R , Hombhanje F , Mita T , 2021. Increase in the proportion of Plasmodium falciparum with kelch13 C580Y mutation and decline in pfcrt and pfmdr1 mutant alleles in Papua New Guinea. Malar J 20: 410.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 3537 2626 583
Full Text Views 74 45 13
PDF Downloads 84 48 12
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save