Patterson J , Sammon M , Garg M , 2016. Dengue, zika and chikungunya: emerging arboviruses in the new world. West J Emerg Med 17: 671–679.
Lim JK , Carabali M , Camacho E , Velez DC , Trujillo A , Egurrola J , Lee KS , Velez ID , Osorio JE , 2020. Epidemiology and genetic diversity of circulating dengue viruses in Medellin, Colombia: a fever surveillance study. BMC Infect Dis 20: 466.
Villar LA , Rojas DP , Besada-Lombana S , Sarti E , 2015. Epidemiological trends of dengue disease in Colombia (2000–2011): a systematic review. PLoS Negl Trop Dis 9: e0003499.
Organizacion Panamericana de la Salud , 2022. Actualización Epidemiológica Semanal para Dengue, Chikunguña y Zika en 2022. Available at: https://ais.paho.org/ha_viz/Arbo/Arbo_Bulletin_Es_2022.asp?env=pri. Accessed September 19, 2023.
Postler TS et al., 2023. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol 168: 224.
Bhatt S et al., 2013. The global distribution and burden of dengue. Nature 496: 504–507.
Sebayang AA , Fahlena H , Anam V , Knopoff D , Stollenwerk N , Aguiar M , Soewono E , 2021. Modeling dengue immune responses mediated by antibodies: a qualitative study. Biology (Basel) 10: 941.
Waman VP , Kolekar P , Ramtirthkar MR , Kale MM , Kulkarni-Kale U , 2016. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes. PeerJ 4: e2326.
Rico-Hesse R , Harrison LM , Salas RA , Tovar D , Nisalak A , Ramos C , Boshell J , de Mesa MT , Nogueira RM , da Rosa AT , 1997. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230: 244–251.
Gutierrez-Barbosa H , Medina-Moreno S , Zapata JC , Chua JV , 2020. Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Trop. Med. Infect. Dis 5: 156.
Yenamandra SP , Koo C , Chiang S , Lim HSJ , Yeo ZY , Ng LC , Hapuarachchi HC , 2021. Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Sci Rep 11: 13496.
Paquita García M , Padilla C , Figueroa D , Manrique C , Cabezas C , 2022. Emergence of the Cosmopolitan Genotype of Dengue Virus Serotype 2 (DENV2) in Madre de Dios, Peru, 2019. Rev Peru Med Exp Salud Publica 39: 126–128.
Giovanetti M et al., 2022. Emergence of Dengue virus serotype 2 cosmopolitan genotype, Brazil. Emerg Infect Dis 28: 1725–1727.
CDC , 2023. Dengue: Clinical Presentation. Available at: https://www.cdc.gov/dengue/healthcare-providers/clinical-presentation.html. Accessed September 8, 2023.
Waggoner JJ , Ballesteros G , Gresh L , Mohamed-Hadley A , Tellez Y , Sahoo MK , Abeynayake J , Balmaseda A , Harris E , Pinsky BA , 2016. Clinical evaluation of a single-reaction real-time RT-PCR for pan-Dengue and Chikungunya virus detection. J Clin Virol 78: 57–61.
Medina F , Medina JF , Colon C , Vergne E , Santiago GA , Munoz-Jordan JL , 2012. Dengue virus: isolation, propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15: Unit 15D.2.
Berg MG et al., 2020. Advanced molecular surveillance approaches for characterization of blood borne hepatitis viruses. PLoS One 15: e0236046.
Vilsker M et al., 2019. Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics 35: 871–873.
Minh BQ , Schmidt HA , Chernomor O , Schrempf D , Woodhams MD , Von Haeseler A , Lanfear R , Teeling E , 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37: 1530–1534.
Drummond AJ , Rambaut A , 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
Kalyaanamoorthy S , Minh BQ , Wong TKF , Von Haeseler A , Jermiin LS , 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587–589.
Katoh K , Rozewicki J , Yamada KD , 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166.
Ali A , Ali I , 2015. The complete genome phylogeny of geographically distinct Dengue virus serotype 2 isolates (1944–2013) supports further groupings within the cosmopolitan genotype. PLoS One 10: e0138900.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 4355 | 2356 | 372 |
Full Text Views | 190 | 100 | 13 |
PDF Downloads | 161 | 79 | 9 |
Dengue virus (DENV) is the etiological agent of dengue fever (DF), which is among the most prevalent vector-borne diseases in the tropics. In 2022, the Colombian health surveillance system reported more than 69,000 cases of DF. As part of a hospital-based fever surveillance study, acute-phase sera were collected from 4,545 patients with suspected dengue between 2020 and 2023 in three municipalities of Colombia. Combined reverse transcription–polymerase chain reaction and antigen rapid testing confirmed that 376 patients (8.3%) had DF. The virus was isolated in cell culture from 166 of these patients (44.1%), and genome sequencing was performed successfully on 122 (73.5%). Three DENV serotypes (1, 2, and 3) were identified. Phylogenetic analyses of the DENV-2 sequences revealed that 42 of 50 of the isolates (84%) belonged to the DENV-2 cosmopolitan genotype lineage, clustering with sequences from Asia, Peru, and Brazil. We report the detection, isolation, and whole-genome sequencing (11 Kb) of the DENV-2 cosmopolitan genotype and its recent introduction to Colombia.
Financial support: This work was supported by the University of Wisconsin-Madison GHI One Health Colombia, Universidad Nacional de Colombia (Medellin), and the Abbott Pandemic Defense Coalition.
Disclosure: G. A. C. and M. G. B. are Abbott employees and shareholders. J. O. is the single owner of Vaccigen, LLC. J. E. O. and J. P. H. O. are employees and shareholders of VaxThera. This study was approved by the Research and Ethics Committee of the Corporación Investigaciones Biológicas (No. 0822JHO04). Voluntary participation in this study occurred after signing written informed consent. For participants younger than 18 years, minor assent was also obtained, and parents or a legal representative provided written informed consent on their behalf.
Data availability: The authors confirm that the data supporting the findings of this study are available within the article and its supplemental materials. Raw data and other additional information are available from the corresponding author upon request.
Authors’ addresses: Karl A. Ciuoderis, Jaime Usuga, Isabel Moreno, Laura S. Perez-Restrepo, Diana Y. Flórez, and Andres Cardona, GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia, E-mails: coord_cwohc@unal.edu.co, jausugar@unal.edu.co, imorenol@unal.edu.co, diflorezc@unal.edu.co, lab_cwohc@unal.edu.co, and ancardona@unal.edu.co. Gavin A. Cloherty and Michael G. Berg, Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, E-mails: gavin.cloherty@abbott.com and michael.berg@abbott.com. Juan P. Hernández-Ortiz, GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia, and Department of Materials and Nanotechnology, Universidad Nacional de Colombia, Medellin, Colombia, E-mail: jphernandezo@unal.edu.co. Jorge E. Osorio, Department of Pathobiological Sciences, School of Veterinary Medicine, and Global Health Institute, University of Wisconsin, Madison, WI, E-mail: jorge.osorio@wisc.edu.
Patterson J , Sammon M , Garg M , 2016. Dengue, zika and chikungunya: emerging arboviruses in the new world. West J Emerg Med 17: 671–679.
Lim JK , Carabali M , Camacho E , Velez DC , Trujillo A , Egurrola J , Lee KS , Velez ID , Osorio JE , 2020. Epidemiology and genetic diversity of circulating dengue viruses in Medellin, Colombia: a fever surveillance study. BMC Infect Dis 20: 466.
Villar LA , Rojas DP , Besada-Lombana S , Sarti E , 2015. Epidemiological trends of dengue disease in Colombia (2000–2011): a systematic review. PLoS Negl Trop Dis 9: e0003499.
Organizacion Panamericana de la Salud , 2022. Actualización Epidemiológica Semanal para Dengue, Chikunguña y Zika en 2022. Available at: https://ais.paho.org/ha_viz/Arbo/Arbo_Bulletin_Es_2022.asp?env=pri. Accessed September 19, 2023.
Postler TS et al., 2023. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch Virol 168: 224.
Bhatt S et al., 2013. The global distribution and burden of dengue. Nature 496: 504–507.
Sebayang AA , Fahlena H , Anam V , Knopoff D , Stollenwerk N , Aguiar M , Soewono E , 2021. Modeling dengue immune responses mediated by antibodies: a qualitative study. Biology (Basel) 10: 941.
Waman VP , Kolekar P , Ramtirthkar MR , Kale MM , Kulkarni-Kale U , 2016. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes. PeerJ 4: e2326.
Rico-Hesse R , Harrison LM , Salas RA , Tovar D , Nisalak A , Ramos C , Boshell J , de Mesa MT , Nogueira RM , da Rosa AT , 1997. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230: 244–251.
Gutierrez-Barbosa H , Medina-Moreno S , Zapata JC , Chua JV , 2020. Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Trop. Med. Infect. Dis 5: 156.
Yenamandra SP , Koo C , Chiang S , Lim HSJ , Yeo ZY , Ng LC , Hapuarachchi HC , 2021. Evolution, heterogeneity and global dispersal of cosmopolitan genotype of Dengue virus type 2. Sci Rep 11: 13496.
Paquita García M , Padilla C , Figueroa D , Manrique C , Cabezas C , 2022. Emergence of the Cosmopolitan Genotype of Dengue Virus Serotype 2 (DENV2) in Madre de Dios, Peru, 2019. Rev Peru Med Exp Salud Publica 39: 126–128.
Giovanetti M et al., 2022. Emergence of Dengue virus serotype 2 cosmopolitan genotype, Brazil. Emerg Infect Dis 28: 1725–1727.
CDC , 2023. Dengue: Clinical Presentation. Available at: https://www.cdc.gov/dengue/healthcare-providers/clinical-presentation.html. Accessed September 8, 2023.
Waggoner JJ , Ballesteros G , Gresh L , Mohamed-Hadley A , Tellez Y , Sahoo MK , Abeynayake J , Balmaseda A , Harris E , Pinsky BA , 2016. Clinical evaluation of a single-reaction real-time RT-PCR for pan-Dengue and Chikungunya virus detection. J Clin Virol 78: 57–61.
Medina F , Medina JF , Colon C , Vergne E , Santiago GA , Munoz-Jordan JL , 2012. Dengue virus: isolation, propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15: Unit 15D.2.
Berg MG et al., 2020. Advanced molecular surveillance approaches for characterization of blood borne hepatitis viruses. PLoS One 15: e0236046.
Vilsker M et al., 2019. Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics 35: 871–873.
Minh BQ , Schmidt HA , Chernomor O , Schrempf D , Woodhams MD , Von Haeseler A , Lanfear R , Teeling E , 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37: 1530–1534.
Drummond AJ , Rambaut A , 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
Kalyaanamoorthy S , Minh BQ , Wong TKF , Von Haeseler A , Jermiin LS , 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587–589.
Katoh K , Rozewicki J , Yamada KD , 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166.
Ali A , Ali I , 2015. The complete genome phylogeny of geographically distinct Dengue virus serotype 2 isolates (1944–2013) supports further groupings within the cosmopolitan genotype. PLoS One 10: e0138900.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 4355 | 2356 | 372 |
Full Text Views | 190 | 100 | 13 |
PDF Downloads | 161 | 79 | 9 |