Guerenstein PG, Guerin PM, 2001. Olfactory responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J Exp Biol 204: 585.
Syed Z, 2015. Chemical ecology and olfaction in arthropod vectors of diseases. Curr Opin Insect Sci 10: 83–89.
Liu F, Chen Z, Ye Z, Liu N, 2021. The olfactory chemosensation of hematophagous hemipteran insects. Front Physiol 12: 703768.
Abad-Franch F, Noireau F, Paucar A, Aguilar HM, Carpio C, Racines J, 2000. The use of live-bait traps for the study of sylvatic Rhodnius populations (Hemiptera: Reduviidae) in palm trees. Trans R Soc Trop Med Hyg 94: 629–630.
Noireau F et al., 2002. Trapping triatominae in sylvatic habits. Mem Inst Oswaldo Cruz 97: 61–63.
Forlani L, Pedrini N, Girotti JR, Mijailovsky SJ, Cardozo RM, Gentile AG, Hernández-Suárez CM, Rabinovich JE, Juárez MP, 2015. Biological control of the Chagas disease vector Triatoma infestans with the entomopathogenic fungus Beauveria bassiana combined with an aggregation cue: field, laboratory and mathematical modeling assessment. PLoS Negl Trop Dis 9: e0003778.
Eliceche DP, Achinelly MF, Silvestre C, Micieli MV & Marti GA. 2022. Entomopathogenic nematodes (Heterorhabditidae and Steinernematidae), to control Triatoma infestans populations (Hemiptera: Reduviidae), Chagas disease vector. Biol Control 165: 104814.
Guerenstein PG, Lorenzo MG, Núñez J, Lazzari CR, 1995. Baker’s yeast, an attractant for baiting traps for Chagas’ disease vectors. Experientia 51: 834–837.
Lorenzo MG, Reisenman CE, Lazzari CR, 1998. Triatoma infestans can be captured under natural conditions using yeast-baited traps. Acta Trop 70: 277–284.
Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juárez MP, 2009. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis 3: e434
Mota T et al., 2014. A multi-species bait for Chagas disease vectors. PLoS Negl Trop Dis 8: e2677.
Barrozo RB, Lazzari CR, 2004. Orientation behaviour of the blood-sucking bug Triatoma infestans to short- chain fatty acids: synergistic effect of L-lactic acid and carbon dioxide. Chem Senses 29: 833–841.
Milne MA, Ross EJ, Sonenshine DE, Kirsch P, 2009. Attraction of Triatoma dimidiata and Rhodnius prolixus (Hemiptera: Reduviidae) to combinations of host cues tested at two distances. J Med Entomol 46: 1062–1073.
Cardozo M, Fiad FG, Crocco LB & Gorla DE. 2020. Attraction of Triatoma infestans (Klug) to adhesive yeast-baited trap under laboratory conditions. Int J Trop Insect Sci 40: 209–215.
Ryelandt J, Noireau F, Lazzari CR, 2011. A multimodal bait for trapping blood-sucking arthropods. Acta Trop 117: 131–136.
Fontan A, Gonzales Audino P, Martinez A, Alzogaray RA, Zerba EN, Camps F. & Cork A. 2002. Attractant volatiles released by female and male Triatoma infestans (Hemiptera: Reduviidae), a vector of Chagas disease: chemical analysis behavioral bioassay. J Med Entomol 39: 191–197.
Rojas de Arias A, Abad-Franch F, Acosta N, López E, González N, Zerba E, Tarelli G, Masuh H, 2012. Post-control surveillance of Triatoma infestans and Triatoma sordida with chemically-baited sticky traps. PLoS Negl Trop Dis 6: e1822.
Minoli S, Palottini F, Crespo JG, Manrique G, 2013. Dislodgement effect of natural semiochemicals released by disturbed triatomines: a possible alternative monitoring tool. J Vector Ecol 38: 353–360.
Lazzari CR, Lorenzo MG, 2009. Exploiting triatomine behaviour: alternative perspectives for their control. Mem Inst Oswaldo Cruz 104: 65–70.
Guidobaldi F, Guerenstein PG, 2013. Evaluation of a CO2-free commercial mosquito attractant to capture triatomines in the laboratory. J Vector Ecol 38: 245–250.
Guidobaldi F, Guerenstein P, 2016. A CO2-free synthetic host–odor mixture that attracts and captures triatomines: effect of emitted odorant ratios. J Med Entomol 53: tjw057.
Updyke EA, Allan BF, 2018. An experimental evaluation of cross-vane panel traps for the collection of sylvatic triatomines (Hemiptera: Reduviidae). J Med Entomol 55: 485–489.
Taneja J, Guerin P, 1997. Ammonia attracts the haematophagous bug Triatoma infestans: behavioural and neurophysiological data on nymphs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 181: 21–34.
Otálora-Luna F, Perret JL, Guerin PM, 2004. Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 847–854.
Gurgel-Gonçalves R, 2022. Stronger control-surveillance systems for vector-borne Chagas disease. Mem Inst Oswaldo 117: e210130chgsb.
Rojas de Arias A, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F, 2022. Chagas disease control-surveillance in the Americas: the multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz 117: e210130.
Steullet P, Guerin PM, 1994. Identification of vertebrate volatiles stimulating olfactory receptors on tarsus I of the tick Amblyomma variegatum Fabricius (Ixodidae). I Receptors within the Haller’s organ capsule. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 173: 27–38.
Puri SN, Mendki MJ, Sukumaran D, Ganesan K, Prakash S, Sekhar K, 2006. Electroantennogram and behavioral responses of Culex quinquefasciatus (Diptera: Culicidae) females to chemicals found in human skin emanations. J Med Entomol 43: 207–213.
Ghaninia M, Larsson M, Hansson BS, Ignell R, 2008. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings. J Exp Biol 211: 3020–3027.
Gikonyo NK, Hassanali A, Njagi PGN, Saini RK, 2003. Responses of Glossina morsitans morsitans to blends of electroantennographically active compounds in the odors of its preferred (buffalo and ox) and nonpreferred (waterbuck) hosts. J Chem Ecol 29: 2331–2345.
Tchouassi DP, Sang R, Sole CL, Bastos ADS, Teal PEA, Borgemeister C, Baldwyn T, 2013. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus. PLoS Negl Trop Dis 7: e2007.
Guerenstein PG, Lazzari CR, 2001. Host-seeking: how triatomines acquire and make use of information to find blood. Acta Trop 110: 148–158.
Guerenstein PG, Lazzari CR, Takken W & Knols B Ecology and Control of Vector-Borne Diseases Volume II: Olfaction in Vector-Host Interactions. Wageningen, The Netherlands: Wageningen University Press, 309–325.
Jha S, 2017. Characterization of human body odor and identification of aldehydes using chemical sensor. Rev Anal Chem 36: 20160028.
Bernier UR, Booth MM, Yost RA, 1999. Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. Anal Chem 71: 1–7.
Dormont L, Bessière JM, McKey D & Cohuet A. 2013. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J Exp Biol 216: 2783–2788.
Saveer AM, Hatano E, Wada-Katsumata A, Meagher RL, Schal C, 2023. Nonanal, a new fall armyworm sex pheromone component, significantly increases the efficacy of pheromone lures. Pest Manag Sci 79: 2831–2839.
Lorenzo MG, Lazzari CR, 1996. The spatial pattern of defaecation in Triatoma infestans and the role of faeces as a chemical mark of the refuge. J Insect Physiol 42: 903–907.
Sánchez Cassacia P, González-Britez N, Acosta N, López E, 2019. Vectores de Trypanosoma cruzi en ambientes domésticos y silvestres de las comunidades Ayoreo Totobiegosode del Alto Paraguay. Rev Soc Cient Parag 24: 218–229.
Cortes V et al., 2021. Trypanosoma cruzi infection follow-up in a sylvatic vector of Chagas disease: comparing early and late stage nymphs. PLoS Negl Trop Dis 15: e0009729.
Latorre-Estivalis JM, Große-Wilde E, da Rocha Fernandes G, Hansson BS, Lorenzo MG, 2022. Changes in antennal gene expression underlying sensory system maturation in Rhodnius prolixus. Insect Biochem Mol Biol 140: 103704.
Espinoza J, Bustamante M, García AL, Tenorio O, Noireau F, Rivera D, Rojas Cortez M, 2011. Biología reproductiva de dos poblaciones de Triatoma infestans (Hemiptera: Reduviidae) en condiciones de laboratorio. Gac Med Bol 34: 66–70.
Rabinovich JE, Nieves EL, 2011. Vital statistics of triatominae (Hemiptera: Reduviidae) under laboratory conditions: III. Rhodnius neglectus. J Med Entomol 48: 775–787.
Reisenman CE, 2014. Hunger is the best spice: effects of starvation in the antennal responses of the blood-sucking bug Rhodnius prolixus. J Insect Physiol 71: 8–13.
Monteiro M, Matos S, Gaona F, Schaerer C, Arias F, Dorigo D, Veja MC, Rojas de Arias A, Ribeiro A, Varella M, 2017. Production and characterization of porous kaolinite modified pellets for slow realease pheromone. Int J Adv Res (Indore) 5: 1718–1725.
Gaona F, Quiñonez E, Jara A, Manabe A, Silva N, Monteiro M, Schaerer C, Vega M, Rojas de Arias A, 2022. Infrared photoelectric sensor network applied to remote arthropod insects’ surveillance. Proceedings of the 11th International Conference on Sensor Networks—Volume 1: SENSORNETS, 113–120.
Ortiz MI, Molina J, 2009. Preliminary evidence of Rhodnius prolixus (Hemiptera: Triatominae) attraction to human skin odour extracts. Acta Trop 113: 174–179 [erratum in: Acta Trop. 2010;115:165].
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2697 | 1459 | 29 |
Full Text Views | 159 | 31 | 2 |
PDF Downloads | 94 | 34 | 3 |
To assess the attracting capacity of aliphatic and aromatic aldehydes to Triatoma infestans, the Chagas disease vector, laboratory tests were conducted using individual compounds and mixtures to evaluate their potential use in baited traps for intradomicile population dynamics analysis. Commercial samples of hexanal, nonanal, and benzaldehyde were used at 95% purity. The experiments were performed at 25°C and 65% relative humidity using two procedures: a glass arena with filter papers impregnated with 1, 5, and 10 μL of the tested compounds and a double-choice olfactometer. Attraction was scored positively if the insect remained more than 30 seconds on one of the surfaces. The results of the study showed that hexanal was attractive to females at higher concentrations (5–10 μL; P < 0.0001), and IV instar nymphs were only attracted at the highest concentration (10 μL; P < 0.01). Nonanal was attractive to IV instar nymphs at 1 and 5 μL (P < 0.0001), whereas males and females were more attracted at 1 μL (P < 0.01 and P < 0.05, respectively). Benzaldehyde showed significant differences with respect to controls, attracting females at low concentrations (1 μL; P < 0.0001) and IV instar nymphs at 5 and 10 μL (P < 0.0001 and P < 0.001, respectively). In the olfactometer, the 60:40 hexanal/nonanal mixture was the most effective. In conclusion, this study demonstrated that the aliphatic and aromatic aldehydes studied here, both individually and in mixtures, could be used as effective attractants for T. infestans in intradomicile-baited traps. These results suggest that mixtures of these compounds could be implemented in field trials for Chagas disease surveillance.
Financial support: This study received financial support from and
Authors’ addresses: Antonieta Rojas de Arias, Adolfo Borges, and Diego Dorigo Cortés, Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay, E-mails: rojasdearias@gmail.com, borges.adolfo@gmail.com, and diego.dorigo@gmail.com.
Guerenstein PG, Guerin PM, 2001. Olfactory responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J Exp Biol 204: 585.
Syed Z, 2015. Chemical ecology and olfaction in arthropod vectors of diseases. Curr Opin Insect Sci 10: 83–89.
Liu F, Chen Z, Ye Z, Liu N, 2021. The olfactory chemosensation of hematophagous hemipteran insects. Front Physiol 12: 703768.
Abad-Franch F, Noireau F, Paucar A, Aguilar HM, Carpio C, Racines J, 2000. The use of live-bait traps for the study of sylvatic Rhodnius populations (Hemiptera: Reduviidae) in palm trees. Trans R Soc Trop Med Hyg 94: 629–630.
Noireau F et al., 2002. Trapping triatominae in sylvatic habits. Mem Inst Oswaldo Cruz 97: 61–63.
Forlani L, Pedrini N, Girotti JR, Mijailovsky SJ, Cardozo RM, Gentile AG, Hernández-Suárez CM, Rabinovich JE, Juárez MP, 2015. Biological control of the Chagas disease vector Triatoma infestans with the entomopathogenic fungus Beauveria bassiana combined with an aggregation cue: field, laboratory and mathematical modeling assessment. PLoS Negl Trop Dis 9: e0003778.
Eliceche DP, Achinelly MF, Silvestre C, Micieli MV & Marti GA. 2022. Entomopathogenic nematodes (Heterorhabditidae and Steinernematidae), to control Triatoma infestans populations (Hemiptera: Reduviidae), Chagas disease vector. Biol Control 165: 104814.
Guerenstein PG, Lorenzo MG, Núñez J, Lazzari CR, 1995. Baker’s yeast, an attractant for baiting traps for Chagas’ disease vectors. Experientia 51: 834–837.
Lorenzo MG, Reisenman CE, Lazzari CR, 1998. Triatoma infestans can be captured under natural conditions using yeast-baited traps. Acta Trop 70: 277–284.
Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juárez MP, 2009. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis 3: e434
Mota T et al., 2014. A multi-species bait for Chagas disease vectors. PLoS Negl Trop Dis 8: e2677.
Barrozo RB, Lazzari CR, 2004. Orientation behaviour of the blood-sucking bug Triatoma infestans to short- chain fatty acids: synergistic effect of L-lactic acid and carbon dioxide. Chem Senses 29: 833–841.
Milne MA, Ross EJ, Sonenshine DE, Kirsch P, 2009. Attraction of Triatoma dimidiata and Rhodnius prolixus (Hemiptera: Reduviidae) to combinations of host cues tested at two distances. J Med Entomol 46: 1062–1073.
Cardozo M, Fiad FG, Crocco LB & Gorla DE. 2020. Attraction of Triatoma infestans (Klug) to adhesive yeast-baited trap under laboratory conditions. Int J Trop Insect Sci 40: 209–215.
Ryelandt J, Noireau F, Lazzari CR, 2011. A multimodal bait for trapping blood-sucking arthropods. Acta Trop 117: 131–136.
Fontan A, Gonzales Audino P, Martinez A, Alzogaray RA, Zerba EN, Camps F. & Cork A. 2002. Attractant volatiles released by female and male Triatoma infestans (Hemiptera: Reduviidae), a vector of Chagas disease: chemical analysis behavioral bioassay. J Med Entomol 39: 191–197.
Rojas de Arias A, Abad-Franch F, Acosta N, López E, González N, Zerba E, Tarelli G, Masuh H, 2012. Post-control surveillance of Triatoma infestans and Triatoma sordida with chemically-baited sticky traps. PLoS Negl Trop Dis 6: e1822.
Minoli S, Palottini F, Crespo JG, Manrique G, 2013. Dislodgement effect of natural semiochemicals released by disturbed triatomines: a possible alternative monitoring tool. J Vector Ecol 38: 353–360.
Lazzari CR, Lorenzo MG, 2009. Exploiting triatomine behaviour: alternative perspectives for their control. Mem Inst Oswaldo Cruz 104: 65–70.
Guidobaldi F, Guerenstein PG, 2013. Evaluation of a CO2-free commercial mosquito attractant to capture triatomines in the laboratory. J Vector Ecol 38: 245–250.
Guidobaldi F, Guerenstein P, 2016. A CO2-free synthetic host–odor mixture that attracts and captures triatomines: effect of emitted odorant ratios. J Med Entomol 53: tjw057.
Updyke EA, Allan BF, 2018. An experimental evaluation of cross-vane panel traps for the collection of sylvatic triatomines (Hemiptera: Reduviidae). J Med Entomol 55: 485–489.
Taneja J, Guerin P, 1997. Ammonia attracts the haematophagous bug Triatoma infestans: behavioural and neurophysiological data on nymphs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 181: 21–34.
Otálora-Luna F, Perret JL, Guerin PM, 2004. Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 847–854.
Gurgel-Gonçalves R, 2022. Stronger control-surveillance systems for vector-borne Chagas disease. Mem Inst Oswaldo 117: e210130chgsb.
Rojas de Arias A, Monroy C, Guhl F, Sosa-Estani S, Santos WS, Abad-Franch F, 2022. Chagas disease control-surveillance in the Americas: the multinational initiatives and the practical impossibility of interrupting vector-borne Trypanosoma cruzi transmission. Mem Inst Oswaldo Cruz 117: e210130.
Steullet P, Guerin PM, 1994. Identification of vertebrate volatiles stimulating olfactory receptors on tarsus I of the tick Amblyomma variegatum Fabricius (Ixodidae). I Receptors within the Haller’s organ capsule. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 173: 27–38.
Puri SN, Mendki MJ, Sukumaran D, Ganesan K, Prakash S, Sekhar K, 2006. Electroantennogram and behavioral responses of Culex quinquefasciatus (Diptera: Culicidae) females to chemicals found in human skin emanations. J Med Entomol 43: 207–213.
Ghaninia M, Larsson M, Hansson BS, Ignell R, 2008. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings. J Exp Biol 211: 3020–3027.
Gikonyo NK, Hassanali A, Njagi PGN, Saini RK, 2003. Responses of Glossina morsitans morsitans to blends of electroantennographically active compounds in the odors of its preferred (buffalo and ox) and nonpreferred (waterbuck) hosts. J Chem Ecol 29: 2331–2345.
Tchouassi DP, Sang R, Sole CL, Bastos ADS, Teal PEA, Borgemeister C, Baldwyn T, 2013. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus. PLoS Negl Trop Dis 7: e2007.
Guerenstein PG, Lazzari CR, 2001. Host-seeking: how triatomines acquire and make use of information to find blood. Acta Trop 110: 148–158.
Guerenstein PG, Lazzari CR, Takken W & Knols B Ecology and Control of Vector-Borne Diseases Volume II: Olfaction in Vector-Host Interactions. Wageningen, The Netherlands: Wageningen University Press, 309–325.
Jha S, 2017. Characterization of human body odor and identification of aldehydes using chemical sensor. Rev Anal Chem 36: 20160028.
Bernier UR, Booth MM, Yost RA, 1999. Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. Anal Chem 71: 1–7.
Dormont L, Bessière JM, McKey D & Cohuet A. 2013. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J Exp Biol 216: 2783–2788.
Saveer AM, Hatano E, Wada-Katsumata A, Meagher RL, Schal C, 2023. Nonanal, a new fall armyworm sex pheromone component, significantly increases the efficacy of pheromone lures. Pest Manag Sci 79: 2831–2839.
Lorenzo MG, Lazzari CR, 1996. The spatial pattern of defaecation in Triatoma infestans and the role of faeces as a chemical mark of the refuge. J Insect Physiol 42: 903–907.
Sánchez Cassacia P, González-Britez N, Acosta N, López E, 2019. Vectores de Trypanosoma cruzi en ambientes domésticos y silvestres de las comunidades Ayoreo Totobiegosode del Alto Paraguay. Rev Soc Cient Parag 24: 218–229.
Cortes V et al., 2021. Trypanosoma cruzi infection follow-up in a sylvatic vector of Chagas disease: comparing early and late stage nymphs. PLoS Negl Trop Dis 15: e0009729.
Latorre-Estivalis JM, Große-Wilde E, da Rocha Fernandes G, Hansson BS, Lorenzo MG, 2022. Changes in antennal gene expression underlying sensory system maturation in Rhodnius prolixus. Insect Biochem Mol Biol 140: 103704.
Espinoza J, Bustamante M, García AL, Tenorio O, Noireau F, Rivera D, Rojas Cortez M, 2011. Biología reproductiva de dos poblaciones de Triatoma infestans (Hemiptera: Reduviidae) en condiciones de laboratorio. Gac Med Bol 34: 66–70.
Rabinovich JE, Nieves EL, 2011. Vital statistics of triatominae (Hemiptera: Reduviidae) under laboratory conditions: III. Rhodnius neglectus. J Med Entomol 48: 775–787.
Reisenman CE, 2014. Hunger is the best spice: effects of starvation in the antennal responses of the blood-sucking bug Rhodnius prolixus. J Insect Physiol 71: 8–13.
Monteiro M, Matos S, Gaona F, Schaerer C, Arias F, Dorigo D, Veja MC, Rojas de Arias A, Ribeiro A, Varella M, 2017. Production and characterization of porous kaolinite modified pellets for slow realease pheromone. Int J Adv Res (Indore) 5: 1718–1725.
Gaona F, Quiñonez E, Jara A, Manabe A, Silva N, Monteiro M, Schaerer C, Vega M, Rojas de Arias A, 2022. Infrared photoelectric sensor network applied to remote arthropod insects’ surveillance. Proceedings of the 11th International Conference on Sensor Networks—Volume 1: SENSORNETS, 113–120.
Ortiz MI, Molina J, 2009. Preliminary evidence of Rhodnius prolixus (Hemiptera: Triatominae) attraction to human skin odour extracts. Acta Trop 113: 174–179 [erratum in: Acta Trop. 2010;115:165].
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2697 | 1459 | 29 |
Full Text Views | 159 | 31 | 2 |
PDF Downloads | 94 | 34 | 3 |