A Novel Topical Formulation of the Leishmaniasis Drug Glucantime as a Nanostructured Lipid Carrier-Based Hydrogel

Faranak Dehghani Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran;

Search for other papers by Faranak Dehghani in
Current site
Google Scholar
PubMed
Close
,
Nafiseh Farhadian Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran;

Search for other papers by Nafiseh Farhadian in
Current site
Google Scholar
PubMed
Close
,
Vahid Mashayekhi Goyonlo Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;

Search for other papers by Vahid Mashayekhi Goyonlo in
Current site
Google Scholar
PubMed
Close
, and
Omid Ahmadi Department of Parasitology and Mycology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran

Search for other papers by Omid Ahmadi in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Leishmaniasis is a parasitic disease caused by Leishmania parasites. Meglumine antimoniate, or Glucantime, is the primary drug used to treat this disease. Glucantime with a standard painful injection administration route has high aqueous solubility, burst release, a significant tendency to cross into aqueous medium, rapid clearance from the body, and insufficient residence time at the injury site. Topical delivery of Glucantime can be a favorable option in the treatment of localized cutaneous leishmaniasis. In this study, a suitable transdermal formulation in the form of nanostructured lipid carrier (NLC)-based hydrogel containing Glucantime was prepared. In vitro drug release studies confirmed controllable drug release behavior for hydrogel formulation. An in vivo permeation study on healthy BALB/C female mice confirmed appropriate penetration of hydrogel into the skin and sufficient residence time in the skin. In vivo performance of the new topical formulation on the BALB/C female mice showed a significant improvement in reduction of leishmaniasis wound size, lowering parasites number in lesions, liver, and spleen compared with commercial ampule. Hematological analysis showed a significant reduction of the drug’s side effects, including variance of enzymes and blood factors. NLC-based hydrogel formulation is proposed as a new topical administration to replace the commercial ampule.

Author Notes

Address correspondence to Nafiseh Farhadian, Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91779-48974, Iran. E-mail: n.farhadian@um.ac.ir

Financial support: This research was supported by Iran National Science Foundation (Grant no. 98011058).

Authors’ addresses: Faranak Dehghani and Nafiseh Farhadian, Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, E-mails: faranak.dehghani351@yahoo.com and n.farhadian@um.ac.ir. Vahid Mashayekhi Goyonlo, Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran, E-mail: mashayekhiv@mums.ac.ir. Omid Ahmadi, Department of Parasitology and Mycology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran, E-mail: ahmadio961@mums.ac.ir.

  • 1.

    Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R, 2017. Leishmaniasis: a review. F1000Research 6: 750.

  • 2.

    Santos DO et al., 2008. Leishmaniasis treatment – a challenge that remains: a review. Parasitol Res 103: 110.

  • 3.

    Tamiru HF, Mashalla YJ, Mohammed R, Tshweneagae GT, 2019. Cutaneous leishmaniasis a neglected tropical disease: community knowledge, attitude and practices in an endemic area, northwest Ethiopia. BMC Infect Dis 19: 110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bruschi F, Gradoni L, 2018. The Leishmaniases: Old Neglected Tropical Diseases, 1st edition. Springer.

  • 5.

    Jamshaid H, ud Din F, Khan GM, 2021. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnol 19: 151.

  • 6.

    Pourmohammadi B, Motazedian M, Handjani F, Hatam G, Habibi S, Sarkari B, 2011. Glucantime efficacy in the treatment of zoonotic cutaneous leishmaniasis. Southeast Asian J Trop Med Public Health 42: 502508.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Varshosaz J, Arbabi B, Pestehchian N, Saberi S, Delavari M, 2018. Chitosan-titanium dioxide-Glucantime nanoassemblies effects on promastigote and amastigote of Leishmania major. Int J Biol Macromol 107: 212221.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Roberts WL, McMurray WJ, Rainey PM, 1998. Characterization of the antimonial antileishmanial agent meglumine antimonate (Glucantime). Antimicrob Agents Chemother 42: 10761082.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mohammadzadeh M, Behnaz F, Golshan Z, 2013. Efficacy of Glucantime for treatment of cutaneous leishmaniasis in central Iran. J Infect Public Health 6: 120124.

  • 10.

    Alishahi M, Khorram M, Asgari Q, Davani F, Goudarzi F, Emami A, Arastehfar A, Zomorodian K, 2020. Glucantime-loaded electrospun core-shell nanofibers composed of poly (ethylene oxide)/gelatin-poly (vinyl alcohol)/chitosan as dressing for cutaneous leishmaniasis. Int J Biol Macromol 163: 288297.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Navaei A, Rasoolian M, Momeni A, Emami S, Rafienia M, 2013. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study. Drug Dev Ind Pharm 40: 701710.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Oliveira MJA, Silva EO, Braz LMA, Maia R, Amato VS, Lugão AB, Parra DF, 2014. Influence of chitosan/clay in drug delivery of Glucantime from PVP membranes. Radiat Phys Chem 94: 194198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marwah H, Garg T, Goyal AK, Rath G, 2016. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 23: 564578.

  • 14.

    Ganesan P, Narayanasamy D, 2017. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 6: 3756.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lee SG, Jeong JH, Lee KM, Jeong KH, Yang H, Kim M, Jung H, Lee S, Choi YW, 2014. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. Int J Nanomedicine 9: 289299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wu H, Ramachandran C, Weiner ND, Roessler BJ, 2001. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int J Pharm 220: 6375.

  • 17.

    Czajkowska-Kośnik A, Szekalska M, Winnicka K, 2019. Nanostructured lipid carriers: a potential use for skin drug delivery systems. Pharmacol Rep 71: 156166.

  • 18.

    Ghorbanzadeh M, Golmohammadzadeh S, Karimi M, Farhadian N, 2022. Evaluation of vitamin D3 serum level of microemulsion based hydrogel containing Calcipotriol drug. Mater Today Commun 33: 104409.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Doktorovova S, Souto EB, 2009. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin Drug Deliv 6: 165176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kalat SM, Khamesipour A, Bavarsad N, Fallah M, Khashayarmanesh Z, Feizi E, Neghabi K, Abbasi A, Jaafari MR, 2014. Use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice. Exp Parasitol 143: 510.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Momeni A, Rasoolian M, Momeni A, Navaei A, Emami S, Shaker Z, Mohebali M, Khoshdel A, 2013. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J Liposome Res 23: 134144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ekambaram P, Sathali AAH, Priyanka K, 2012. Solid lipid nanoparticles: a review. Sci Rev Chem Comm 2: 80102.

  • 23.

    Mehnert W, Mäder K, 2012. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64: 83101.

  • 24.

    Zheng M, Falkeborg M, Zheng Y, Yang T, Xu X, 2013. Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surf A Physicochem Eng Asp 430: 7684.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ebrahimi S, Farhadian N, Karimi M, Ebrahimi M, 2020. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study. Antimicrob Resist Infect Control 9: 112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hayati F, Ghamsari SM, Dehghan MM, Oryan A, 2018. Effects of carbomer 940 hydrogel on burn wounds: an in vitro and in vivo study. J Dermatolog Treat 29: 593599.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Motawea A, El Abd AE-GH, Borg T, Motawea M, Tarshoby M, 2019. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot 40: 1421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ghorbanzadeh M, Farhadian N, Golmohammadzadeh S, Karimi M, Ebrahimi M, 2019. Formulation, clinical and histopathological assessment of microemulsion based hydrogel for UV protection of skin. Colloids Surf B Biointerfaces 179: 393404.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Khan AA, Mudassir J, Akhtar S, Murugaiyah V, Darwis Y, 2019. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: statistical optimization, in vitro and in vivo evaluations. Pharmaceutics 11: 97.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ortiz AC, Yañez O, Salas-Huenuleo E, Morales JO, 2021. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics 13: 531.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J, 2015. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ 53: 147159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Flores FC et al., 2015. Hydrogels containing nanocapsules and nanoemulsions of tea tree oil provide antiedematogenic effect and improved skin wound healing. J Nanosci Nanotechnol 15: 800809.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bolla PK, Clark BA, Juluri A, Cheruvu HS, Renukuntla J, 2020. Evaluation of formulation parameters on permeation of ibuprofen from topical formulations using Strat-M® membrane. Pharmaceutics 12: 151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    El-Sherbiny IM, Yacoub MH, 2013. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013: 38128.

  • 35.

    Sabale V, Kunjwani H, Sabale P, 2011. Formulation and in vitro evaluation of the topical antiageing preparation of the fruit of Benincasa hispida. J Ayurveda Integr Med 2: 124128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Deuschle VCKN, Deuschle RAN, Bortoluzzi MR, Athayde ML, 2015. Physical chemistry evaluation of stability, spreadability, in vitro antioxidant, and photo-protective capacities of topical formulations containing Calendula officinalis L. leaf extract. Braz J Pharm Sci 51: 6375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Dehghani F, Farhadian N, Golmohammadzadeh S, Biriaee A, Ebrahimi M, Karimi M, 2017. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur J Pharm Sci 96: 479489.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Golmohammadzadeh S, Farhadian N, Biriaee A, Dehghani F, Khameneh B, 2017. Preparation, characterization and in vitro evaluation of microemulsion of raloxifene hydrochloride. Drug Dev Ind Pharm 43: 16191625.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC, 2012. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine 8: 10341041.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Binesh N, Farhadian N, Mohammadzadeh A, 2021. Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis. Colloids Surf B Biointerfaces 202: 111691.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ezatpour B, Saedi Dezaki E, Mahmoudvand H, Azadpour M, Ezzatkhah F, 2015. In vitro and in vivo antileishmanial effects of Pistacia khinjuk against Leishmania tropica and Leishmania major. Evid Based Complement Altern Med 2015: 149707.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Riaz A, Ahmed N, Khan MI, Haq I-u, ur Rehman A, Khan GM, 2019. Formulation of topical NLCs to target macrophages for cutaneous leishmaniasis. J Drug Deliv Sci Technol 54: 101232.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Mahmoudvand H, Tavakoli R, Sharififar F, Minaie K, Ezatpour B, Jahanbakhsh S, Sharifi I, 2015. Leishmanicidal and cytotoxic activities of Nigella sativa and its active principle, thymoquinone. Pharm Biol 53: 10521057.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Shah PP, Desai PR, Channer D, Singh M, 2012. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 161: 735745.

  • 45.

    Veninga T, Wieringa R, Morse H, 1989. Pigmented spleens in C57BL mice. Lab Anim 23: 1620.

  • 46.

    Parasuraman S, Raveendran R, Kesavan R, 2010. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1: 87.

  • 47.

    Averill H, Roche J, King C, 1929. Synthetic glycerides. I. Preparation and melting points of glycerides of known constitution. J Am Chem Soc 51: 866872.

  • 48.

    Li J, Liu D, Tan G, Zhao Z, Yang X, Pan W, 2016. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Carbohydr Polym 146: 435444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Bhatia V, Barber R, 1955. The effect of pH variations of ointment bases on the local anesthetic activity of incorporated ethyl aminobenzoate. I. Hydrophilic ointment USP. J Am Pharm Assoc 44: 342343.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Sezer AD, Cevher E, Hatıpoğlu F, Oğurtan Z, Baş AL, Akbuğa J, 2008. Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol Pharm Bull 31: 23262333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Kaviyarasu K, Sajan D, Devarajan PA, 2013. A rapid and versatile method for solvothermal synthesis of Sb 2 O 3 nanocrystals under mild conditions. Appl Nanosci 3: 529533.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Nandiyanto ABD, Oktiani R, Ragadhita R, 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol 4: 97118.

  • 53.

    Wang Z et al., 2022. Quantitative structure–activity relationship of enhancers of licochalcone a and glabridin release and permeation enhancement from carbomer hydrogel. Pharmaceutics 14: 262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Pezeshki A, Ghanbarzadeh B, Mohammadi M, Fathollahi I, Hamishehkar H, 2014. Encapsulation of vitamin A palmitate in nanostructured lipid carrier (NLC)-effect of surfactant concentration on the formulation properties. Adv Pharm Bull 4 (Suppl 2): 563568.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Talele P, Sahu S, Mishra AK, 2018. Physicochemical characterization of solid lipid nanoparticles comprised of glycerol monostearate and bile salts. Colloids Surf B Biointerfaces 172: 517525.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Menberu MA, Hayes AJ, Liu S, Psaltis AJ, Wormald PJ, Vreugde S, 2021. Tween 80 and its derivative oleic acid promote the growth of Corynebacterium accolens and inhibit Staphylococcus aureus clinical isolates. Int Forum Allergy Rhinol 11: 810813.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Pereira LM, Hatanaka E, Martins EF, Oliveira F, Liberti EA, Farsky SH, Curi R, Pithon-Curi TC, 2008. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem Funct 26: 197204.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Cardoso C, Favoreto S Jr. , Oliveira LL, Vancim JO, Barban GB, Ferraz DB, Silva JS, 2011. Oleic acid modulation of the immune response in wound healing: a new approach for skin repair. Immunobiology 216: 409415.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1230 542 39
Full Text Views 295 90 25
PDF Downloads 66 25 4
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save