Differential Susceptibility of Aedes aegypti and Aedes albopictus Mosquitoes to Infection by Mayaro Virus Strains

Diana Fernández Department of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Diana Fernández in
Current site
Google Scholar
PubMed
Close
,
Ruimei Yun Department of Microbiology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Ruimei Yun in
Current site
Google Scholar
PubMed
Close
,
Jiehua Zhou Department of Pathology, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Jiehua Zhou in
Current site
Google Scholar
PubMed
Close
,
Pierina L. Parise Department of Pathology, University of Texas Medical Branch, Galveston, Texas;
Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil;

Search for other papers by Pierina L. Parise in
Current site
Google Scholar
PubMed
Close
,
Clemente Mosso-González Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico;

Search for other papers by Clemente Mosso-González in
Current site
Google Scholar
PubMed
Close
,
Alejandro Villasante-Tezanos Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Alejandro Villasante-Tezanos in
Current site
Google Scholar
PubMed
Close
,
Scott C. Weaver Department of Microbiology, University of Texas Medical Branch, Galveston, Texas;
Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas;
Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Scott C. Weaver in
Current site
Google Scholar
PubMed
Close
,
Victoria Pando-Robles Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico

Search for other papers by Victoria Pando-Robles in
Current site
Google Scholar
PubMed
Close
, and
Patricia V. Aguilar Department of Pathology, University of Texas Medical Branch, Galveston, Texas;
Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas;
Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas;

Search for other papers by Patricia V. Aguilar in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Mayaro virus (MAYV) is an arthropod-borne virus (arbovirus) belonging to the family Togaviridae, genus Alphavirus. In recent years, the geographic distribution of MAYV may have expanded north from South and Central America into the Caribbean Islands. Although Haemagogus janthinomys is considered the main vector for MAYV, the virus has also been isolated from other mosquitoes, including Aedes aegypti, a widespread species that serves as the main vector for highly epidemic viruses. Given the possible expansion and outbreaks of MAYV in Latin America, it is possible that MAYV might be adapting to be efficiently transmitted by urban vectors. Therefore, to investigate this possibility, we evaluated the vector competence of Ae. aegypti and Ae. albopictus mosquitoes to transmit MAYV isolated during a year of low or high MAYV transmission. Adult Ae. aegypti and Ae. albopictus were orally infected with the MAYV strains, and the infection, dissemination, and transmission rates were calculated to evaluate their vector competence. Overall, we found higher infection, dissemination, and transmission rates in both Ae. aegypti and Ae. albopictus mosquitoes infected with the strain isolated during a MAYV outbreak, whereas low/no transmission was detected with the strain isolated during a year of low MAYV activity. Our results confirmed that both Ae. aegypti and Ae. albopictus are competent vectors for the emergent MAYV. Our data suggest that strains isolated during MAYV outbreaks might be better fit to infect and be transmitted by urban vectors, raising serious concern about the epidemic potential of MAYV.

Author Notes

Address correspondence to Patricia V. Aguilar, Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609. E-mail: pvaguila@utmb.edu

Financial support: This research was supported by ConTex, award number 2019-55 (PVA, VPR) and by the National Institute of Health, award R24AI120942 (SCW, PVA). PLP was supported by The São Paulo Research Foundation (FAPESP)2022/04420-3.

Authors’ addresses: Diana Fernández and Jiehua Zhou, Department of Pathology, University of Texas Medical Branch, Galveston, TX, E-mails: dianifernandez@gmail.com and jiehzhou@utmb.edu. Ruimei Yun, Department of Microbiology, University of Texas Medical Branch, Galveston, TX, E-mail: ruyun@utmb.edu. Pierina L. Parise, Department of Pathology, University of Texas Medical Branch, Galveston, TX, and Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil, E-mail: plparise@utmb.edu; Clemente Mosso-González, Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico, E-mail: clemente.mosso@insp.mx. Alejandro Villasante-Tezanos, Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, TX, E-mail: alvillas@utmb.edu. Scott C. Weaver, Department of Microbiology, University of Texas Medical Branch, Galveston, TX, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, E-mail: sweaver@utmb.edu. Victoria Pando-Robles, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico, E-mail: victoria.pando@insp.mx. Patricia V. Aguilar, Department of Pathology, University of Texas Medical Branch, Galveston, TX, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, E-mail: pvaguila@utmb.edu.

  • 1.

    Huang YS , Higgs S , Vanlandingham DL , 2019. Arbovirus-mosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses. Front Microbiol 10: 22.

    • Search Google Scholar
    • Export Citation
  • 2.

    Mayer SV , Tesh RB , Vasilakis N , 2017. The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Trop 166: 155163.

    • Search Google Scholar
    • Export Citation
  • 3.

    Kolimenakis A , Heinz S , Wilson ML , Winkler V , Yakob L , Michaelakis A , Papachristos D , Richardson C , Horstick O , 2021. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit: a systematic review. PLoS Negl Trop Dis 15: e0009631.

    • Search Google Scholar
    • Export Citation
  • 4.

    Girard M , Nelson CB , Picot V , Gubler DJ , 2020. Arboviruses: a global public health threat. Vaccine 38: 39893994.

  • 5.

    Findlater A , Bogoch II , 2018. Human mobility and the global spread of infectious diseases: a focus on air travel. Trends Parasitol 34: 772783.

    • Search Google Scholar
    • Export Citation
  • 6.

    Whitehorn J , Yacoub S , 2019. Global warming and arboviral infections. Clin Med (Lond) 19: 149152.

  • 7.

    Ganjian N , Riviere-Cinnamond A , 2020. Mayaro virus in Latin America and the Caribbean. Rev Panam Salud Publica 44: e14.

  • 8.

    Anonymous , 2016. Zika virus infection: global update on epidemiology and potentially associated clinical manifestations. Wkly Epidemiol Rec 91: 7381.

    • Search Google Scholar
    • Export Citation
  • 9.

    Charrel R , Leparc-Goffart I , Gallian P , de Lamballerie X , 2014. Globalization of Chikungunya: 10 years to invade the world. Clin Microbiol Infect.

    • Search Google Scholar
    • Export Citation
  • 10.

    Choumet V , Desprès P , 2015. Dengue and other flavivirus infections. Rev Sci Tech 34: 473478, 467–472.

  • 11.

    Lavergne A et al., 2006. Mayaro virus: complete nucleotide sequence and phylogenetic relationships with other alphaviruses. Virus Res 117: 283290.

    • Search Google Scholar
    • Export Citation
  • 12.

    Espósito DL , da Fonseca BA , 2015. Complete genome sequence of mayaro virus (Togaviridae, Alphavirus) strain BeAr 20290 from Brazil. Genome Announc 3: e01372-15.

    • Search Google Scholar
    • Export Citation
  • 13.

    Lorenz C , Freitas Ribeiro A , Chiaravalloti-Neto F , 2019. Mayaro virus distribution in South America. Acta Trop 198: 105093.

  • 14.

    Strauss JH , Strauss EG , 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491562.

  • 15.

    Lednicky J et al., 2016. Mayaro Virus in child with acute febrile illness, Haiti, 2015. Emerg Infect Dis 22: 20002002.

  • 16.

    Powers AM et al., 2006. Genetic relationships among Mayaro and Una viruses suggest distinct patterns of transmission. Am J Trop Med Hyg 75: 461469.

    • Search Google Scholar
    • Export Citation
  • 17.

    Auguste AJ et al., 2015. Evolutionary and ecological characterization of Mayaro virus strains isolated during an outbreak, Venezuela, 2010. Emerg Infect Dis 21: 17421750.

    • Search Google Scholar
    • Export Citation
  • 18.

    Terzian AC et al., 2015. Isolation and characterization of Mayaro virus from a human in Acre, Brazil. Am J Trop Med Hyg 92: 401404.

  • 19.

    Suchowiecki K , Reid SP , Simon GL , Firestein GS , Chang A , 2021. Persistent joint pain following arthropod virus infections. Curr Rheumatol Rep 23: 26.

    • Search Google Scholar
    • Export Citation
  • 20.

    Halsey ES , Siles C , Guevara C , Vilcarromero S , Jhonston EJ , Ramal C , Aguilar PV , Ampuero JS , 2013. Mayaro virus infection, Amazon Basin region, Peru, 2010-2013. Emerg Infect Dis 19: 18391842.

    • Search Google Scholar
    • Export Citation
  • 21.

    Anderson CR , Downs WG , Wattley GH , Ahin NW , Reese AA , 1957. Mayaro virus: a new human disease agent. II. Isolation from blood of patients in Trinidad, B.W.I. Am J Trop Med Hyg 6: 10121016.

    • Search Google Scholar
    • Export Citation
  • 22.

    Aitken TH , Downs WG , Anderson CR , Spense L , Casals J , 1960. Mayaro virus isolated from a Trinidadian mosquito, Mansonia venezuelensis. Science 131: 986.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hoch AL , Peterson NE , LeDuc JW , Pinheiro FP , 1981. An outbreak of Mayaro virus disease in Belterra, Brazil. III. Entomological and ecological studies. Am J Trop Med Hyg 30: 689698.

    • Search Google Scholar
    • Export Citation
  • 24.

    Diagne CT , Bengue M , Choumet V , Hamel R , Pompon J , Missé D , 2020. Mayaro virus pathogenesis and transmission mechanisms. Pathogens 9: 738.

    • Search Google Scholar
    • Export Citation
  • 25.

    de Curcio JS , Salem-Izacc SM , Pereira Neto LM , Nunes EB , Anunciação CE , de Paula Silveira-Lacerda E , 2022. Detection of Mayaro virus in Aedes aegypti mosquitoes circulating in Goiânia-Goiás-Brazil. Microbes Infect 24: 104948.

    • Search Google Scholar
    • Export Citation
  • 26.

    Long KC , Ziegler SA , Thangamani S , Hausser NL , Kochel TJ , Higgs S , Tesh RB , 2011. Experimental transmission of Mayaro virus by Aedes aegypti. Am J Trop Med Hyg 85: 750757.

    • Search Google Scholar
    • Export Citation
  • 27.

    Serra OP , Cardoso BF , Ribeiro AL , Santos FA , Slhessarenko RD , 2016. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiabá, state of Mato Grosso, Brazil. Mem Inst Oswaldo Cruz 111: 2029.

    • Search Google Scholar
    • Export Citation
  • 28.

    LeDuc JW , Pinheiro FP , Travassos da Rosa AP , 1981. An outbreak of Mayaro virus disease in Belterra, Brazil. II. Epidemiology. Am J Trop Med Hyg 30: 682688.

    • Search Google Scholar
    • Export Citation
  • 29.

    Muñoz M , Navarro JC , 2012. Mayaro: a re-emerging Arbovirus in Venezuela and Latin America [in Spanish]. Biomedica 32: 286302.

  • 30.

    Mutricy R et al., 2022. Mayaro virus infection in French Guiana, a cross sectional study 2003-2019. Infect Genet Evol 99: 105243.

  • 31.

    Caicedo EY , Charniga K , Rueda A , Dorigatti I , Mendez Y , Hamlet A , Carrera JP , Cucunubá ZM , 2021. The epidemiology of Mayaro virus in the Americas: a systematic review and key parameter estimates for outbreak modelling. PLoS Negl Trop Dis 15: e0009418.

    • Search Google Scholar
    • Export Citation
  • 32.

    Navarrete-Espinosa J , Gomez-Dantes H , 2006. Arbovirus causales de fiebre hemorragica en pacientes del Instituto Mexicano del Seguro Social. Rev Med Inst Mex Seguro Soc 44: 347353.

    • Search Google Scholar
    • Export Citation
  • 33.

    Pereira TN , Carvalho FD , De Mendonça SF , Rocha MN , Moreira LA , 2020. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl Trop Dis 14: e0007518.

    • Search Google Scholar
    • Export Citation
  • 34.

    Dieme C , Ciota AT , Kramer LD , 2020. Transmission potential of Mayaro virus by Aedes albopictus, and Anopheles quadrimaculatus from the USA. Parasit Vectors 13: 613.

    • Search Google Scholar
    • Export Citation
  • 35.

    Forshey BM et al., 2010. Arboviral etiologies of acute febrile illnesses in western South America, 2000-2007. PLoS Negl Trop Dis 4: e787.

  • 36.

    Britannica , 2022. Tapachula. Available at: https://www.britannica.com/place/Tapachula. Accessed May 1, 2023

  • 37.

    Guerbois M et al., 2016. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti Mosquitoes in the Americas. J Infect Dis 214: 13491356.

    • Search Google Scholar
    • Export Citation
  • 38.

    Calvo-Anguiano G et al., 2021. Molecular characterization of associated pathogens in febrile patients during inter-epidemic periods of urban arboviral diseases in Tapachula southern Mexico. Pathogens 10: 1450.

    • Search Google Scholar
    • Export Citation
  • 39.

    Binn LN , Harrison VR , Randall R , 1967. Patterns of viremia and antibody observed in rhesus monkeys inoculated with chikungunya and other serologically related group A arboviruses. Am J Trop Med Hyg 16: 782785.

    • Search Google Scholar
    • Export Citation
  • 40.

    Pinheiro FP , Freitas RB , Travassos da Rosa JF , Gabbay YB , Mello WA , LeDuc JW , 1981. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am J Trop Med Hyg 30: 674681.

    • Search Google Scholar
    • Export Citation
  • 41.

    Anderson SL , Richards SL , Smartt CT , 2010. A simple method for determining arbovirus transmission in mosquitoes. J Am Mosq Control Assoc 26: 108111.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wu W et al., 2018. Development of multiplex real-time reverse-transcriptase polymerase chain reaction assay for simultaneous detection of Zika, dengue, yellow fever, and chikungunya viruses in a single tube. J Med Virol 90: 16811686.

    • Search Google Scholar
    • Export Citation
  • 43.

    Simpson JT , Wong K , Jackman SD , Schein JE , Jones SJ , Birol I , 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19: 11171123.

    • Search Google Scholar
    • Export Citation
  • 44.

    Langmead B , Salzberg SL , 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357359.

  • 45.

    Robinson JT , Thorvaldsdóttir H , Winckler W , Guttman M , Lander ES , Getz G , Mesirov JP , 2011. Integrative genomics viewer. Nat Biotechnol 29: 2426.

    • Search Google Scholar
    • Export Citation
  • 46.

    Brault AC , Powers AM , Holmes EC , Woelk CH , Weaver SC , 2002. Positively charged amino acid substitutions in the e2 envelope glycoprotein are associated with the emergence of Venezuelan equine encephalitis virus. J Virol 76: 17181730.

    • Search Google Scholar
    • Export Citation
  • 47.

    Brault AC , Powers AM , Weaver SC , 2002. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J Virol 76: 63876392.

    • Search Google Scholar
    • Export Citation
  • 48.

    Tsetsarkin KA , Vanlandingham DL , McGee CE , Higgs S , 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.

    • Search Google Scholar
    • Export Citation
  • 49.

    Tsetsarkin KA , McGee CE , Volk SM , Vanlandingham DL , Weaver SC , Higgs S , 2009. Epistatic roles of E2 glycoprotein mutations in adaption of Chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One 4: e6835.

    • Search Google Scholar
    • Export Citation
  • 50.

    Tsetsarkin KA , Chen R , Leal G , Forrester N , Higgs S , Huang J , Weaver SC , 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci USA 108: 78727877.

    • Search Google Scholar
    • Export Citation
  • 51.

    Agarwal A , Sharma AK , Sukumaran D , Parida M , Dash PK , 2016. Two novel epistatic mutations (E1:K211E and E2:V264A) in structural proteins of Chikungunya virus enhance fitness in Aedes aegypti. Virology 497: 5968.

    • Search Google Scholar
    • Export Citation
  • 52.

    Saxton-Shaw KD , Ledermann JP , Borland EM , Stovall JL , Mossel EC , Singh AJ , Wilusz J , Powers AM , 2013. O’nyong nyong virus molecular determinants of unique vector specificity reside in non-structural protein 3. PLoS Negl Trop Dis 7: e1931.

    • Search Google Scholar
    • Export Citation
  • 53.

    Fros JJ , Geertsema C , Zouache K , Baggen J , Domeradzka N , van Leeuwen DM , Flipse J , Vlak JM , Failloux AB , Pijlman GP , 2015. Mosquito Rasputin interacts with Chikungunya virus nsP3 and determines the infection rate in Aedes albopictus. Parasit Vectors 8: 464.

    • Search Google Scholar
    • Export Citation
  • 54.

    Galindo P , Srihongse S , 1967. Transmission of arboviruses to hamsters by the bite of naturally infected Culex (Melanoconion) mosquitoes. Am J Trop Med Hyg 16: 525530.

    • Search Google Scholar
    • Export Citation
  • 55.

    Wiggins K , Eastmond B , Alto BW , 2018. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Med Vet Entomol 32: 436442.

    • Search Google Scholar
    • Export Citation
  • 56.

    Smith GC , Francy DB , 1991. Laboratory studies of a Brazilian strain of Aedes albopictus as a potential vector of Mayaro and Oropouche viruses. J Am Mosq Control Assoc 7: 8993.

    • Search Google Scholar
    • Export Citation
  • 57.

    Riemersma KK , Coffey LL , 2019. Chikungunya virus populations experience diversity- dependent attenuation and purifying intra-vector selection in Californian Aedes aegypti mosquitoes. PLoS Negl Trop Dis 13: e0007853.

    • Search Google Scholar
    • Export Citation
  • 58.

    Vega-Rúa A , Zouache K , Girod R , Failloux AB , Lourenço-de-Oliveira R , 2014. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol 88: 62946306.

    • Search Google Scholar
    • Export Citation
  • 59.

    Tsetsarkin KA et al., 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5: 4084.

    • Search Google Scholar
    • Export Citation
  • 60.

    de Lamballerie X , Leroy E , Charrel RN , Ttsetsarkin K , Higgs S , Gould EA , 2008. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5: 33.

    • Search Google Scholar
    • Export Citation
  • 61.

    Christofferson RC , Mores CN , 2016. Potential for extrinsic incubation temperature to alter interplay between transmission potential and mortality of dengue-infected Aedes aegypti. Environ Health Insights 10: 119123.

    • Search Google Scholar
    • Export Citation
  • 62.

    Christofferson RC , Mores CN , 2011. Estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype. PLoS One 6: e16298.

    • Search Google Scholar
    • Export Citation
  • 63.

    Holland JJ , de la Torre JC , Clarke DK , Duarte E , 1991. Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol 65: 29602967.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1020 1020 140
Full Text Views 81 81 8
PDF Downloads 110 110 10
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save