House Condition Scoring Scale as a Risk Indicator of Infestation by Aedes in Two Mexican Localities

Ángela Liliana Monroy-Díaz Programa de Maestría en Investigación en Enfermedades Infecciosas, Universidad de Santander, Universidad de Boyacá, Boyacá, Colombia;

Search for other papers by Ángela Liliana Monroy-Díaz in
Current site
Google Scholar
PubMed
Close
,
José Ramos-Castañeda Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico;

Search for other papers by José Ramos-Castañeda in
Current site
Google Scholar
PubMed
Close
,
Irma Yvonne Amaya-Larios Centro Educativo de Humanidades, Jiutepec, Mexico;

Search for other papers by Irma Yvonne Amaya-Larios in
Current site
Google Scholar
PubMed
Close
,
Fredi Alexander Diaz-Quijano Department of Epidemiology—Laboratório de Inferência Causal em Epidemiologia, University of São Paulo, School of Public Health, São Paulo, Brazil;

Search for other papers by Fredi Alexander Diaz-Quijano in
Current site
Google Scholar
PubMed
Close
, and
Ruth Aralí Martínez-Vega Escuela de Medicina, Universidad de Santander, Bucaramanga, Colombia

Search for other papers by Ruth Aralí Martínez-Vega in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Mexico has shown an increase in dengue incidence rates. There are factors related to the location that determine housing infestation by Aedes. This study aimed to determine factors associated with housing infestation by immature forms of Aedes spp. in the dengue endemic localities of Axochiapan and Tepalcingo, Mexico, from 2014 to 2016. A cohort study was carried out. Surveys and inspections of front- and backyards were conducted every 6 months, looking for immature forms of Aedes spp. A house condition scoring scale was developed using three variables (house maintenance, tidiness of the front- and backyards, and shading of the front- and backyards). Multiple and multilevel regression logistic analysis were conducted considering the housing infestation as the outcome and the household characteristics observed 6 months before the outcome as factors; this was adjusted by time (seasonal and cyclical variations of the vector). The infestation oscillated between 5.8% of the houses in the second semester of 2015 and 29.3% in the second semester of 2016. The factors directly associated with housing infestation by Aedes were the house condition score (adjusted odds ratio [aOR]: 1.64; 95% CI: 1.40–1.91) and the previous record of housing infestation (aOR: 2.99; 95% CI: 2.00–4.48). Moreover, the breeding-site elimination done by house residents reduced the housing infestation odds by 81% (95% CI: 25–95%). These factors were independent of the seasonal and cyclical variations of the vector. In conclusion, our findings could help to focalize antivectorial interventions in dengue-endemic regions with similar demographic and socioeconomic characteristics.

Author Notes

Address correspondence to Ruth Aralí Martínez-Vega, Escuela de Medicina, Universidad de Santander, Campus Universitario Lagos del Cacique, calle 70 No 55-210, Bucaramanga C.P. 680003, Colombia. E-mails: rutharam@yahoo.com or ruth.martinez@udes.edu.co

Financial support: This work was supported in part by Instituto Nacional de Salud Pública de México (CI-986/CI-494) and Sanofi Pasteur (DNG22-EXT) [J. R.-C.] and Universidad de Boyacá [A. L. M.-D.]. F. A. D.-Q. was granted a fellowship for research productivity from the Brazilian National Council for Scientific and Technological Development–CNPq, process/contract identification: 312656/2019-0. The American Society of Tropical Medicine and Hygiene (ASTMH) assisted with publication expenses.

Disclosure: Projects were approved by the Institutional Review Board of INSP (CI: 986 and CI: 1223), and written informed consent was obtained from participants.

Authors’ addresses: Ángela Liliana Monroy-Díaz, Programa de Maestría en Investigación en Enfermedades Infecciosas, Universidad de Santander, Universidad de Boyacá, Boyacá, Colombia, E-mail: almonroy@uniboyaca.edu.co. José Ramos-Castañeda, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México, E-mail: jramos@insp.mx. Irma Yvonne Amaya-Larios, Centro Educativo de Humanidades, Jiutepec, Mexico, E-mail: yvonne.amayalarios@gmail.com. Fredi Alexander Diaz-Quijano, Department of Epidemiology—Laboratório de Inferência Causal em Epidemiologia, University of São Paulo, School of Public Health, São Paulo, Brazil, E-mail: frediazq@usp.br. Ruth Aralí Martínez-Vega, Escuela de Medicina, Universidad de Santander, Bucaramanga, Colombia, E-mails: rutharam@yahoo.com or ruth.martinez@udes.edu.co.

  • 1.

    Gubler DJ , 2011. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health 39: S3S11.

  • 2.

    Pan American Health Organization and World Health Organization , 2022. Health Information Platform for the Americas. Available at: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?start=2. Accessed August 7, 2022.

  • 3.

    Hiscox A , Kaye A , Vongphayloth K , Banks I , Piffer M , Khammanithong P , Sananikhom P , Kaul S , Hill N , Lindsay SW , Brey PT , 2013. Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 Hydroelectric Project, Laos. Am J Trop Med Hyg 88: 10701078.

    • Search Google Scholar
    • Export Citation
  • 4.

    Morales-Pérez A et al., 2017. Aedes aegypti breeding ecology in Guerrero: cross-sectional study of mosquito breeding sites from the baseline for the Camino Verde trial in Mexico. BMC Public Health 17: 450.

    • Search Google Scholar
    • Export Citation
  • 5.

    Overgaard HJ , Olano VA , Jaramillo JF , Matiz MI , Sarmiento D , Stenström TA , Alexander N , 2017. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Parasit Vectors 10: 356.

    • Search Google Scholar
    • Export Citation
  • 6.

    Louis VR , Montenegro Quiñonez CA , Kusumawathie P , Palihawadana P , Janaki S , Tozan Y , Wijemuni R , Wilder-Smith A , Tissera HA , 2016. Characteristics of and factors associated with dengue vector breeding sites in the city of Colombo, Sri Lanka. Pathog Glob Health 110: 7986.

    • Search Google Scholar
    • Export Citation
  • 7.

    Martínez-Vega RA , Danis-Lozano R , Velasco-Hernández J , Díaz-Quijano FA , González-Fernández M , Santos R , Román S , Argáez-Sosa J , Nakamura M , Ramos-Castañeda J , 2012. A prospective cohort study to evaluate peridomestic infection as a determinant of dengue transmission: protocol. BMC Public Health 12: 262.

    • Search Google Scholar
    • Export Citation
  • 8.

    México , 2011. NORMA Oficial Mexicana NOM-032-SSA2-2010, Para la vigilancia epidemiológica, prevención y control de enfermedades transmitidas por vector. Diario Oficial Federacion. Available at: http://www.cenaprece.salud.gob.mx/programas/interior/vectores/descargas/pdf/nom_032_ssa2_2010_norma_petv.pdf. Accessed August 7, 2022.

  • 9.

    Tun-Lin W , Kay BH , Barnes A , 1995. The Premise Condition Index: a tool for streamlining surveys of Aedes aegypti. Am J Trop Med Hyg 53: 591594.

    • Search Google Scholar
    • Export Citation
  • 10.

    Textor J , van der Zander B , Gilthorpe MS , Liskiewicz M , Ellison GT , 2016. Robust causal inference using directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol 45: 18871894.

    • Search Google Scholar
    • Export Citation
  • 11.

    Dominguez MC , Ludueña FF , Almiron WR , 2000. Population dynamics of Aedes aegypti (Diptera: Culicidae) in Córdoba. Rev Soc Entomol Argent 59: 4150.

    • Search Google Scholar
    • Export Citation
  • 12.

    Hayden MH , Uejio CK , Walker K , Ramberg F , Moreno R , Rosales C , Gameros M , Mearns LO , Zielinski-Gutierrez E , Janes CR , 2010. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border. EcoHealth 7: 6477.

    • Search Google Scholar
    • Export Citation
  • 13.

    Barrera R , Amador M , MacKay AJ , 2011. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl Trop Dis 5: e1378.

    • Search Google Scholar
    • Export Citation
  • 14.

    Villegas-Trejo A , Che-Mendoza A , González-Fernández M , Guillermo-May G , González-Bejarano H , Dzul-Manzanilla F , Ulloa-García A , Danis-Lozano R , Manrique-Saide P , 2011. Control enfocado de Aedes aegypti en localidades de alto riesgo de transmisión de dengue en Morelos, México. Salud Publica Mex 53: 141151.

    • Search Google Scholar
    • Export Citation
  • 15.

    Manrique-Saide P , Davies CR , Coleman PG , Rebollar-Tellez E , Che-Medoza A , Dzul-Manzanilla F , Zapata-Peniche A , 2008. Pupal surveys for Aedes aegypti surveillance and potential targeted control in residential areas of Mérida, México. J Am Mosq Control Assoc 24: 289298.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ramos MM et al., 2008. Epidemic dengue and dengue hemorrhagic fever at the Texas–Mexico border: results of a household-based seroepidemiologic survey, December. Am J Trop Med Hyg 78: 364369.

    • Search Google Scholar
    • Export Citation
  • 17.

    Walker KR , Williamson D , Carrière Y , Reyes-Castro PA , Haenchen S , Hayden MH , Jeffrey Gutierrez E , Ernst KC , 2018. Socioeconomic and human behavioral factors associated with Aedes aegypti (Diptera: Culicidae) immature habitat in Tucson, AZ. J Med Entomol 55: 955963.

    • Search Google Scholar
    • Export Citation
  • 18.

    Bisset Lazcano JA , del Carmen Marquetti M , Portillo R , Rodríguez MM , Suárez S , Leyva M , 2006. Ecological factors linked to the presence of Aedes aegypti larvae in highly infested areas of Playa, a municipality belonging to Ciudad de La Habana, Cuba. Rev Panam Salud Publica 19: 379384.

    • Search Google Scholar
    • Export Citation
  • 19.

    Spiegel JM , Bonet M , Ibarra A-M , Pagliccia N , Ouellette V , Yassi A , 2007. Social and environmental determinants of Aedes aegypti infestation in Central Havana: results of a case-control study nested in an integrated dengue surveillance programme in Cuba. Trop Med Int Health 12: 503510.

    • Search Google Scholar
    • Export Citation
  • 20.

    Vezzani D , Albicocco AP , 2009. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers. Med Vet Entomol 23: 7884.

    • Search Google Scholar
    • Export Citation
  • 21.

    Manrique-Saide P et al., 2013. The risk of Aedes aegypti breeding and premises condition in south Mexico. J Am Mosq Control Assoc 29: 337345.

    • Search Google Scholar
    • Export Citation
  • 22.

    Vásquez-Trujillo A , Cardona-Arango D , Segura-Cardona AM , Portela-Câmara DC , Alves-Honório N , Parra-Henao G , 2021. House-level risk factors for Aedes aegypti infestation in the urban center of Castilla la Nueva, Meta State, Colombia. J Trop Med 2021: 8483236.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hustedt J et al., 2020. Ability of the premise condition index to identify premises with adult and immature Aedes mosquitoes in Kampong Cham, Cambodia. Am J Trop Med Hyg 102: 14321439.

    • Search Google Scholar
    • Export Citation
  • 24.

    Maciel-de-Freitas R , Lourenço-de-Oliveira R , 2011. Does targeting key-containers effectively reduce Aedes aegypti population density? Trop Med Int Health 16: 965973.

    • Search Google Scholar
    • Export Citation
  • 25.

    Kenneson A , Beltrán-Ayala E , Borbor-Cordova MJ , Polhemus ME , Ryan SJ , Endy TP , Stewart-Ibarra AM , 2017. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl Trop Dis 11: e0006150.

    • Search Google Scholar
    • Export Citation
  • 26.

    Giraldo-Hurtado TM , Álvarez-Betancur JP , Parra-Henao G , 2018. Factores asociados a la infestación domiciliaria por Ae. aegypti en el corregimiento el Manzanillo, municipio de Itagüí (Antioquia) año 2015. Rev Fac Nac Salud Publica 36: 3444.

    • Search Google Scholar
    • Export Citation
  • 27.

    Arosteguí J , Coloma J , Hernández-Alvarez C , Suazo-Laguna H , Balmaseda A , Harris E , Andersson N , Ledogar RJ , 2017. Beyond efficacy in water containers: temephos and household entomological indices in six studies between 2005 and 2013 in Managua, Nicaragua. BMC Public Health 17: 434.

    • Search Google Scholar
    • Export Citation
  • 28.

    Andersson N et al., 2015. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 351: h3267.

    • Search Google Scholar
    • Export Citation
  • 29.

    López-Solís AD , Castillo-Vera A , Cisneros J , Solís-Santoyo F , Penilla-Navarro RP , Black Iv WC , Torres-Estrada JL , Rodríguez AD , 2020. Resistencia a insecticidas en Aedes aegypti y Aedes albopictus (Diptera: Culicidae) de Tapachula, Chiapas, México. Salud Publica Mex 62: 439446.

    • Search Google Scholar
    • Export Citation
  • 30.

    Morales-Pérez A et al., 2017. “Where we put little fish in the water there are no mosquitoes:” a cross-sectional study on biological control of the Aedes aegypti vector in 90 coastal-region communities of Guerrero, Mexico. BMC Public Health 17: 433.

    • Search Google Scholar
    • Export Citation
  • 31.

    Esu E , Lenhart A , Smith L , Horstick O , 2010. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health 15: 619631.

    • Search Google Scholar
    • Export Citation
  • 32.

    Codeço CT , Lima AW , Araújo SC , Lima JB , Maciel-de-Freitas R , Honório NA , Galardo AK , Braga IA , Coelho GE , Valle D , 2015. Surveillance of Aedes aegypti: comparison of house index with four alternative traps. PLoS Negl Trop Dis 9: e0003475.

    • Search Google Scholar
    • Export Citation
  • 33.

    Martínez-Vega RA , Danis-Lozano R , Díaz-Quijano FA , Velasco-Hernández J , Santos-Luna R , Román-Pérez S , Kuri-Morales P , Ramos-Castañeda J , 2015. Peridomestic infection as a determining factor of dengue transmission. PLoS Negl Trop Dis 9: e0004296.

    • Search Google Scholar
    • Export Citation
  • 34.

    Cromwell EA , Stoddard ST , Barker CM , Van Rie A , Messer WB , Meshnick SR , Morrison AC , Scott TW , 2017. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl Trop Dis 11: e0005429.

    • Search Google Scholar
    • Export Citation
  • 35.

    Focks DA , UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases , 2004. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 322 322 85
Full Text Views 984 984 0
PDF Downloads 171 171 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save