• 1.

    WHO , 2021. World Malaria Report 2021. Geneva, Switzerland: World Health Organization.

  • 2.

    Piepenburg O , Williams CH , Stemple DL , Armes NA , 2006. DNA detection using recombination proteins. PLoS Biol 4: e204.

  • 3.

    Kersting S , Rausch V , Bier FF , Nickisch-Rosenegk MV , 2014. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13: 99.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hsu YH , Yang WC , Chan KW , 2021. Bushmeat species identification: recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for identification of Formosan Reeves’ Muntjac (Muntiacus reevesi micrurus). Animals (Basel) 11: 426.

    • Search Google Scholar
    • Export Citation
  • 5.

    Lei R , Kong J , Qiu YH , Chen NZ , Zhu SF , Wang XY , Wu PS , 2019. Rapid detection of the pathogenic fungi causing blackleg of Brassica napus using a portable real-time fluorescence detector. Food Chem 288: 5767.

    • Search Google Scholar
    • Export Citation
  • 6.

    Pumford EA , Lu JK , Prasetyo ISME , Zheng EM , Zhang HX , Kamei DT , 2020. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron 170: 112674.

    • Search Google Scholar
    • Export Citation
  • 7.

    Peeling RW , Holmes KK , Mabey D , Ronald A , 2006. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82: v1v6.

    • Search Google Scholar
    • Export Citation
  • 8.

    Shao XY , Wang CR , Xie CM , Wang XG , Liang RL , Xu WW , 2017. Rapid and sensitive lateral flow immunoassay method for procalcitonin (PCT) based on time-resolved immunochromatography. Sensors (Basel) 17: 480.

    • Search Google Scholar
    • Export Citation
  • 9.

    Fu S , Jiang Y , Jiang X , Zhao Y , Chen S , Yang X , Man C , 2018. Probe-free label system for rapid detection of Cronobacter genus in powdered infant formula. AMB Express 8: 155.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wang Y et al., 2019. Label-free cross-priming amplification coupled with endonuclease restriction and nanoparticles-based biosensor for simultaneous detection of nucleic acids and prevention of carryover contamination. Front Chem 7: 111.

    • Search Google Scholar
    • Export Citation
  • 11.

    Snounou G , Viriyakosol S , Zhu XP , Jarra W , Pinheiro L , Rosario VED , Thaithong S , Brown KN , 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320.

    • Search Google Scholar
    • Export Citation
  • 12.

    Faye M , Wahed AAE , Faye O , Kissenkötter J , Hoffmann B , Sall BA , Faye O , 2021. A recombinase polymerase amplification assay for rapid detection of rabies virus. Sci Rep 11: 3131.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ahmed A , der Linden HV , Hartskeerl RA , 2014. Development of a recombinase polymerase amplification assay for the detection of pathogenic Leptospira. Int J Environ Res Public Health 11: 49534964.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lacharoje S , Techangamsuwan S , Chaichanawongsaroj N , 2021. Rapid characterization of feline leukemia virus infective stages by a novel nested recombinase polymerase amplification (RPA) and reverse transcriptase-RPA. Sci Rep 11: 22023.

    • Search Google Scholar
    • Export Citation
  • 15.

    Ghosh P et al., 2022. Evaluation of recombinase-based isothermal amplification assays for point-of-need detection of SARS-CoV-2 in resource-limited settings. Int J Infect Dis 114: 105111.

    • Search Google Scholar
    • Export Citation
  • 16.

    Wu YD , Wang QQ , Wang M , Elsheikha HM , Yang X , Hu M , Zhu XQ , Xu MJ , 2021. Development of a lateral flow strip-based recombinase polymerase amplification assay for the detection of Haemonchus contortus in goat feces. Korean J Parasitol 59: 167171.

    • Search Google Scholar
    • Export Citation
  • 17.

    Daher RK , Stewart G , Boissinot M , Bergeron MG , 2016. Recombinase polymerase amplification for diagnostic applications. Clin Chem 62: 947948.

    • Search Google Scholar
    • Export Citation
  • 18.

    Lai MY , Ooi CH , Lau YL , 2018. Rapid detection of Plasmodium knowlesi by isothermal recombinase polymerase amplification assay. Am J Trop Med Hyg 97: 15971599.

    • Search Google Scholar
    • Export Citation
  • 19.

    Lalremruata A et al., 2020. Recombinase polymerase amplification and lateral flow assay for ultrasensitive detection of low-density Plasmodium falciparum infection from controlled human malaria infection studies and naturally acquired infections. J Clin Microbiol 58: e01879-19.

    • Search Google Scholar
    • Export Citation
  • 20.

    Lai MY , Ooi CH , Lau YL , 2017. Rapid detection of Plasmodium knowlesi by isothermal recombinase polymerase amplification assay. Am J Trop Med Hyg 97: 15971599.

    • Search Google Scholar
    • Export Citation
  • 21.

    Lai MY , Lau YL , 2020. Detection of Plasmodium knowlesi using recombinase polymerase amplification (RPA) combined with SYBR Green I. Acta Trop 208: 105511.

    • Search Google Scholar
    • Export Citation
  • 22.

    Lau YL , Lai MY , Fong MY , Jelip J , Mahmud R , 2016. Loop-mediated isothermal amplification assay for identification of five human Plasmodium species in Malaysia. Am J Trop Med Hyg 94: 336339.

    • Search Google Scholar
    • Export Citation
  • 23.

    Sharma S , Kumar S , Ahmed MZ , Bhardwaj N , Singh J , Kumari S , Savargaonkar D , Anvikar AR , Das J , 2022. Advanced multiplex loop-mediated isothermal amplification (mLAMP) combined with lateral flow detection (LFD) for rapid detection of two prevalent malaria species in India and melting curve analysis. Diagnostics (Basel) 12: 32.

    • Search Google Scholar
    • Export Citation
  • 24.

    Reboud J , Xu G , Garrett A , Adriko M , Yang Z , Tukahebwa EM , Rowell C , Cooper JM , 2018. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc Natl Acad Sci USA 116: 48344842.

    • Search Google Scholar
    • Export Citation
  • 25.

    Yongkiettrakul S , Jaroenram W , Arunrut N , Chareanchim W , Pannengpetch S , Suebsing R , Kiatpathomchai W , Pornthanakasem W , Yuthavong Y , Kongkasuriyachai D , 2014. Application of loop-mediated isothermal amplification assay combined with lateral flow dipstick for detection of Plasmodium falciparum and Plasmodium vivax. Parasitol Int 63: 777784.

    • Search Google Scholar
    • Export Citation
  • 26.

    Mallepaddi PC , Lai MY , Podha S , Ooi CH , Liew JWK , Polavarapu R , Lau YL , 2018. Development of loop-mediated isothermal amplification-based lateral flow device method for the detection of malaria. Am J Trop Med Hyg 99: 704708.

    • Search Google Scholar
    • Export Citation
  • 27.

    Singh R , Singh DP , Savargaonkar D , Singh OMP , Bhatt RM , Valecha N , 2017. Evaluation of SYBR green I based visual loop-mediated isothermal amplification (LAMP) assay for genus and species-specific diagnosis of malaria in P. vivax and P. falciparum endemic regions. J Vector Borne Dis 54: 5460.

    • Search Google Scholar
    • Export Citation
  • 28.

    Jang WS , Lim DH , Choe YL , Jee H , Moon KC , Kim C , Choi M , Park IS , Lim CS , 2021. Development of a multiplex loop-mediated isothermal amplification assay for diagnosis of Plasmodium spp., Plasmodium falciparum and Plasmodium vivax. Diagnostics (Basel) 11: 1950.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lai MY , Lau YL , 2022. Two-stage detection of Plasmodium spp. by combination of recombinase polymerase amplification and loop-mediated isothermal amplification assay. Am J Trop Med Hyg 107: 815819.

    • Search Google Scholar
    • Export Citation
  • 30.

    Sema M , Alemu A , Bayih AG , Getie S , Getnet G , Guelig D , Burton R , LaBarre P , Pillai DR , 2015. Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malar J 14: 44.

    • Search Google Scholar
    • Export Citation
  • 31.

    Lucchi NW , Demas A , Narayanan J , Sumari D , Kabanywanyi A , Kachur SP , Barnwell JW , Udhayakumar V , 2010. Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS One 5: e13733.

    • Search Google Scholar
    • Export Citation
  • 32.

    Li Y , Kumar N , Gopalakrishnan A , Ginocchio C , Manji R , Bythrow M , Lemieux B , Kong H , 2013. Detection and species identification of malaria parasites by isothermal tHDA amplification directly from human blood without sample preparation. J Mol Diagn 15: 634e641.

    • Search Google Scholar
    • Export Citation
  • 33.

    Jin B , Ma B , Li J , Hong Y , Zhang M , 2022. Simultaneous detection of five foodborne pathogens using a mini automatic nucleic acid extractor combined with recombinase polymerase amplification and lateral flow immunoassay. Microorganisms 10: 1352.

    • Search Google Scholar
    • Export Citation
  • 34.

    Larrea-Sarmiento A , Stack JP , Alvarez AM , Arif M , 2021. Multiplex recombinase polymerase amplification assay developed using unique genomic regions for rapid on-site detection of genus Clavibacter and C. nebraskensis. Sci Rep 11: 12017.

    • Search Google Scholar
    • Export Citation
  • 35.

    Garrido-Maestu A , Azinheiro S , Fuciños P , Carvalho J , Prado M , 2020. Comparative study of multiplex real-time recombinase polymerase amplification and ISO 11290-1 methods for the detection of Listeria monocytogenes in dairy products. Food Microbiol 92: 103570.

    • Search Google Scholar
    • Export Citation
  • 36.

    Crannell ZA , Castellanos-Gonzales A , Nair G , Mejia R , White AC , Richards-Kortum R , 2016. A multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem 88: 16101616.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 812 812 34
Full Text Views 154 154 57
PDF Downloads 129 129 45
 
 
 
 
 
 
 
 
 
 
 

Lateral Flow Recombinase Polymerase Amplification Assays for the Detection of Human Plasmodium Species

Meng Yee LaiDepartment of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia;

Search for other papers by Meng Yee Lai in
Current site
Google Scholar
PubMed
Close
,
Mohd Abdul HamidVector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia

Search for other papers by Mohd Abdul Hamid in
Current site
Google Scholar
PubMed
Close
,
Jenarun JelipVector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia

Search for other papers by Jenarun Jelip in
Current site
Google Scholar
PubMed
Close
,
Rose Nani MudinVector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia

Search for other papers by Rose Nani Mudin in
Current site
Google Scholar
PubMed
Close
, and
Yee Ling LauDepartment of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia;

Search for other papers by Yee Ling Lau in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

ABSTRACT.

This study highlights the development of two lateral flow recombinase polymerase amplification assays for the diagnosis of human malaria. The lateral flow cassettes contained test lines that captured biotin-, 6-carboxyfluorescein, digoxigenin-, cyanine 5-, and dinitrophenyl-labeled amplicons. The overall process can be completed in 30 minutes. Recombinase polymerase amplification coupled with lateral flow had a detection limit of 1 copy/µL for Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. No cross-reactivity was observed among nonhuman malaria parasites such as Plasmodium coatneyi, Plasmodium cynomolgi, Plasmodium brasilanium, Plasmodium inui, Plasmodium fragile, Toxoplasma gondii, Sarcocystis spp., Brugia spp., and 20 healthy donors. It is rapid, highly sensitive, robust, and easy to use. The result can be read without the need for special equipment and thus has the potential to serve as an effective alternative to polymerase chain reaction methods for the diagnosis of malaria.

    • Supplemental Materials (PDF 63 KB)

Author Notes

Address correspondence to Yee Ling Lau, Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: lauyeeling@um.edu.my

Authors’ addresses: Meng Yee Lai and Yee Ling Lau, Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia, E-mails: mengylai11@um.edu.my and lauyeeling@um.edu.my. Mohd Abdul Hamid, Jenaurn Jelip, and Rose Nani Mudin, Vector Borne Disease Sector, Ministry of Health Malaysia, Putrajaya, Malaysia, E-mails: dr.mhafizi@moh.gov.my, jenarun@moh.gov.my, and drrose@moh.gov.my.

Save