Ketema T , Bacha K , Getahun K , del Portillo HA , Bassat Q , 2021. Plasmodium vivax epidemiology in Ethiopia 2000ā2020: a systematic review and meta-analysis. PLoS Negl Trop Dis 15: e0009781.
Price RN , Commons RJ , Battle KE , Thriemer K , Mendis K , 2020. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol 36: 560ā570.
World Health Organization , 2018. World Malaria Report 2018. Geneva, Switzerland: WHO.
Lo E et al., 2017. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis 11: e0005806.
Hailemeskel E et al., 2019. Prevalence of Plasmodium falciparum Pfcrt and Pfmdr1 alleles in settings with different levels of Plasmodium vivax co-endemicity in Ethiopia. Int J Parasitol Drugs Drug Resist 11: 8ā12.
Ethiopian Public Health Institute , 2016. Ethiopia National Malaria Indicator Survey 2015. Addis Ababa, Ethiopia: Ethiopian Public Health Institute, Ministry of Health.
Tusting LS , Bousema T , Smith DL , Drakeley C , 2014. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol 84: 151ā208.
Auburn S , Cheng Q , Marfurt J , Price RN , 2021. The changing epidemiology of Plasmodium vivax: insights from conventional and novel surveillance tools. PLoS Med 18: e1003560.
Cook J , Kleinschmidt I , Schwabe C , Nseng G , Bousema T , Corran PH , Riley EM , Drakeley CJ , 2011. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, Equatorial Guinea. PLoS One 6: e25137.
Pothin E , Ferguson NM , Drakeley CJ , Ghani AC , 2016. Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models. Malar J 15: 79.
Greenhouse B et al., 2019. Priority use cases for antibody-detecting assays of recent malaria exposure as tools to achieve and sustain malaria elimination. Gates Open Res 3: 131.
Corran P , Coleman P , Riley E , Drakeley C , 2007. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 23: 575ā582.
King CL , Davies DH , Felgner P , Baum E , Jain A , Randall A , Tetteh K , Drakeley CJ , Greenhouse B , 2015. Biosignatures of exposure/transmission and immunity. Am J Trop Med Hyg 93: 16ā27.
Aka KG et al., 2021. Influence of host-related factors and exposure to mosquito bites on the dynamics of antibody response to Plasmodium falciparum antigens. Trop Med Infect Dis 6: 185.
Weber GE et al., 2017. Sero-catalytic and antibody acquisition models to estimate differing malaria transmission intensities in western Kenya. Sci Rep 7: 16821.
Duffy PE , Patrick Gorres J , 2020. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 5: 48.
Hawaria D , Getachew H , Zhong G , Demissew A , Habitamu K , Raya B , Lee M-C , Yewhalaw D , Yan G , 2019. Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, southwest Ethiopia: a retrospective study. Malar J 18: 145.
Haileselassie W et al., 2021. The effect of irrigation on malaria vector bionomics and transmission intensity in western Ethiopia. Parasit Vectors 14: 516.
Degife AW , Zabel F , Mauser W , 2021. Climate change impacts on potential maize yields in Gambella Region, Ethiopia. Reg Environ Change 21: 60.
Bereczky S , MĆ„rtensson A , Gil JP , FƤrnert A , 2005. Short report: rapid DNA extraction from archive blood spots on filter paper for genotyping of Plasmodium falciparum. Am J Trop Med Hyg 72: 249ā251.
Zhong D , Hemming-Schroeder E , Wang X , Kibret S , Zhou G , Atieli H , Lee M-C , Afrane YA , Githeko AK , Yan G , 2020. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci Rep 10: 16139.
Longley RJ et al., 2020. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med 26: 741ā749.
Mazhari R et al., 2020. A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MAGPIX). PLoS One 15: e0238010.
Ondigo BN , Park GS , Gose SO , Ho BM , Ochola LA , Ayodo GO , Ofulla AV , John CC , 2012. Standardization and validation of a cytometric bead assay to assess antibodies to multiple Plasmodium falciparum recombinant antigens. Malar J 11: 427.
Perraut R , Varela M-L , Mbengue B , Guillotte M , Mercereau-Puijalon O , Vigan-womas I , 2015. Standardization of a multiplex magnetic bead-based for simultaneous detection of IgG to Plasmodium antigens. J Immunol Tech Infect Dis 4: 1ā8.
Gebremariam EB , 2017. The politics of youth employment and policy processes in Ethiopia. IDS Bull 48: 3.
Feleke SM , Brhane BG , Mamo H , Assefa A , Woyessa A , Ogawa GM , Cama V , 2019. Sero-identification of the aetiologies of human malaria exposure (Plasmodium spp.) in the Limu Kossa district of Jimma zone, south western Ethiopia. Malar J 18: 292.
Leonard CM , Assefa A , Sime H , Mohammed H , Kebede A , Solomon H , Drakeley C , Murphy M , Hwang J , Rogier E , 2022. Spatial distribution of Plasmodium falciparum and Plasmodium vivax in northern Ethiopia by microscopic, rapid diagnostic test, laboratory antibody, and antigen data. J Infect Dis 225: 881ā890.
Keffale M et al., 2019. Serological evidence for a decline in malaria transmission following major scale-up of control efforts in a setting selected for Plasmodium vivax and Plasmodium falciparum malaria elimination in Babile district, Oromia, Ethiopia. Trans R Soc Trop Med Hyg 113: 305ā311.
Assefa A et al., 2019. Multiplex serology demonstrate cumulative prevalence and spatial distribution of malaria in Ethiopia. Malar J 18: 246.
Ashton RA et al., 2015. Geostatistical modeling of malaria endemicity using serological indicators of exposure collected through school surveys. Am J Trop Med Hyg 93: 168ā177.
Hawaria D , Demissew A , Kibret S , Lee M-C , Yewhalaw D , Yan G , 2020. Effects of environmental modification on the diversity and positivity of anopheline mosquito aquatic habitats at Arjo-Dedessa irrigation development site, southwest Ethiopia. Infect Dis Poverty 9: 9.
Demissew A , Hawaria D , Kibret S , Animut A , Tsegaye A , Lee M-C , Yan G , Yewhalaw D , 2020. Impact of sugarcane irrigation on malaria vector Anopheles mosquito fauna, abundance and seasonality in Arjo-Didessa, Ethiopia. Malar J 19: 344.
Ashton RA , Kefyalew T , Tesfaye G , Pullan RL , Yadeta D , Reithinger R , Kolaczinski JH , Brooker S , 2011. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings. Malar J 10: 25.
Alemu K , Worku A , Berhane Y , Kumie A , 2014. Men traveling away from home are more likely to bring malaria into high altitude villages, northwest Ethiopia. PLoS One 9: e95341.
Chan Y , Fornace K , Wu L , Arnold BF , Priest JW , Martin DL , Chang MA , Cook J , Stresman G , Drakeley C , 2021. Determining seropositivity ā a review of approaches to define population seroprevalence when using multiplex bead assays to assess burden of tropical diseases. PLoS Negl Trop Dis 15: e0009457.
Markwalter CF , Nyunt MH , Han ZY , Henao R , Jain A , Taghavian O , Felgner PL , Han KT , Nyunt MM , Plowe CV , 2021. Antibody signatures of asymptomatic Plasmodium falciparum malaria infections measured from dried blood spots. Malar J 20: 378.
Ondigo BN , Hamre KES , Frosch AEP , Ayodo G , White MT , John CC , 2020. Antibody profiles to P. falciparum antigens over time characterize acute and long-term malaria exposure in an area of low and unstable transmission. Am J Trop Med Hyg 103: 2189ā2197.
Arnold BF , Priest JW , Hamlin KL , Moss DM , Colford JM Jr , Lammie PJ , 2014. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods. PLoS One 9: e93684.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 237 | 237 | 45 |
Full Text Views | 251 | 251 | 2 |
PDF Downloads | 255 | 255 | 2 |
As malaria control and elimination efforts ramp up in Ethiopia, more sensitive tools for assessing exposure to coendemic Plasmodium falciparum and Plasmodium vivax are needed to accurately characterize malaria risk and epidemiology. Serological markers have been increasingly explored as cost-effective tools for measuring transmission intensity and evaluating intervention effectiveness. The objectives of this study were to evaluate the efficacy of a panel of 10 serological markers as a proxy for malaria exposure and to determine underlying risk factors of seropositivity. We conducted cross-sectional surveys in two sites of contrasting malaria transmission intensities in southwestern Ethiopia: Arjo in Oromia Region (low transmission) and Gambella in Gambella Regional State (moderate transmission). We measured antibody reactivity against six P. falciparum (AMA-1, CSP, EBA175RIII-V, MSP-142, MSP-3, RH2ab) and four P. vivax (DBPII[Sal1], EBP2, MSP-119, RBP2b) targets. We used mixed effects logistic regressions to assess predictors of seropositivity. Plasmodium spp. infection prevalence by quantitative polymerase chain reaction was 1.36% in Arjo and 10.20% in Gambella. Seroprevalence and antibody levels against all 10 antigens were higher in Gambella than in Arjo. We observed spatial heterogeneities in seroprevalence across Arjo and smaller variations across Gambella. Seroprevalence in both sites was lowest against PfCSP and highest against PfAMA-1, PfMSP-142, and PvMSPS-119. Male sex, age, and agricultural occupation were positively associated with seropositivity in Arjo; associations were less pronounced in Gambella. Our findings demonstrate that seroprevalence and antibody levels to specific Plasmodium antigens can be used to identify high-risk groups and geographical areas where interventions to reduce malaria transmission should be implemented.
Authorsā addresses: Brook Jeang, Ming-Chieh Lee, and Guiyun Yan, Program in Public Health, University of California Irvine, Irvine, CA, E-mails: bjeang@uci.edu, mingchil@uci.edu, and guiyuny@uci.edu. Paula Embury, Christopher King, James Kazura, and Arlene Dent, Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, E-mails: paula.embury@case.edu, cxk21@case.edu, jxk14@case.edu, and aed9@case.edu. Delenasaw Yewhalaw, School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia, and Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia, E-mail: yewhalawd@gmail.com. David Narum, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, E-mail: dnarum@niaid.nih.gov. Wai-Hong Tham, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, and Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia, E-mail: tham@wehi.edu.au.
Ketema T , Bacha K , Getahun K , del Portillo HA , Bassat Q , 2021. Plasmodium vivax epidemiology in Ethiopia 2000ā2020: a systematic review and meta-analysis. PLoS Negl Trop Dis 15: e0009781.
Price RN , Commons RJ , Battle KE , Thriemer K , Mendis K , 2020. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol 36: 560ā570.
World Health Organization , 2018. World Malaria Report 2018. Geneva, Switzerland: WHO.
Lo E et al., 2017. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis 11: e0005806.
Hailemeskel E et al., 2019. Prevalence of Plasmodium falciparum Pfcrt and Pfmdr1 alleles in settings with different levels of Plasmodium vivax co-endemicity in Ethiopia. Int J Parasitol Drugs Drug Resist 11: 8ā12.
Ethiopian Public Health Institute , 2016. Ethiopia National Malaria Indicator Survey 2015. Addis Ababa, Ethiopia: Ethiopian Public Health Institute, Ministry of Health.
Tusting LS , Bousema T , Smith DL , Drakeley C , 2014. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol 84: 151ā208.
Auburn S , Cheng Q , Marfurt J , Price RN , 2021. The changing epidemiology of Plasmodium vivax: insights from conventional and novel surveillance tools. PLoS Med 18: e1003560.
Cook J , Kleinschmidt I , Schwabe C , Nseng G , Bousema T , Corran PH , Riley EM , Drakeley CJ , 2011. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, Equatorial Guinea. PLoS One 6: e25137.
Pothin E , Ferguson NM , Drakeley CJ , Ghani AC , 2016. Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models. Malar J 15: 79.
Greenhouse B et al., 2019. Priority use cases for antibody-detecting assays of recent malaria exposure as tools to achieve and sustain malaria elimination. Gates Open Res 3: 131.
Corran P , Coleman P , Riley E , Drakeley C , 2007. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 23: 575ā582.
King CL , Davies DH , Felgner P , Baum E , Jain A , Randall A , Tetteh K , Drakeley CJ , Greenhouse B , 2015. Biosignatures of exposure/transmission and immunity. Am J Trop Med Hyg 93: 16ā27.
Aka KG et al., 2021. Influence of host-related factors and exposure to mosquito bites on the dynamics of antibody response to Plasmodium falciparum antigens. Trop Med Infect Dis 6: 185.
Weber GE et al., 2017. Sero-catalytic and antibody acquisition models to estimate differing malaria transmission intensities in western Kenya. Sci Rep 7: 16821.
Duffy PE , Patrick Gorres J , 2020. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 5: 48.
Hawaria D , Getachew H , Zhong G , Demissew A , Habitamu K , Raya B , Lee M-C , Yewhalaw D , Yan G , 2019. Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, southwest Ethiopia: a retrospective study. Malar J 18: 145.
Haileselassie W et al., 2021. The effect of irrigation on malaria vector bionomics and transmission intensity in western Ethiopia. Parasit Vectors 14: 516.
Degife AW , Zabel F , Mauser W , 2021. Climate change impacts on potential maize yields in Gambella Region, Ethiopia. Reg Environ Change 21: 60.
Bereczky S , MĆ„rtensson A , Gil JP , FƤrnert A , 2005. Short report: rapid DNA extraction from archive blood spots on filter paper for genotyping of Plasmodium falciparum. Am J Trop Med Hyg 72: 249ā251.
Zhong D , Hemming-Schroeder E , Wang X , Kibret S , Zhou G , Atieli H , Lee M-C , Afrane YA , Githeko AK , Yan G , 2020. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci Rep 10: 16139.
Longley RJ et al., 2020. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med 26: 741ā749.
Mazhari R et al., 2020. A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MAGPIX). PLoS One 15: e0238010.
Ondigo BN , Park GS , Gose SO , Ho BM , Ochola LA , Ayodo GO , Ofulla AV , John CC , 2012. Standardization and validation of a cytometric bead assay to assess antibodies to multiple Plasmodium falciparum recombinant antigens. Malar J 11: 427.
Perraut R , Varela M-L , Mbengue B , Guillotte M , Mercereau-Puijalon O , Vigan-womas I , 2015. Standardization of a multiplex magnetic bead-based for simultaneous detection of IgG to Plasmodium antigens. J Immunol Tech Infect Dis 4: 1ā8.
Gebremariam EB , 2017. The politics of youth employment and policy processes in Ethiopia. IDS Bull 48: 3.
Feleke SM , Brhane BG , Mamo H , Assefa A , Woyessa A , Ogawa GM , Cama V , 2019. Sero-identification of the aetiologies of human malaria exposure (Plasmodium spp.) in the Limu Kossa district of Jimma zone, south western Ethiopia. Malar J 18: 292.
Leonard CM , Assefa A , Sime H , Mohammed H , Kebede A , Solomon H , Drakeley C , Murphy M , Hwang J , Rogier E , 2022. Spatial distribution of Plasmodium falciparum and Plasmodium vivax in northern Ethiopia by microscopic, rapid diagnostic test, laboratory antibody, and antigen data. J Infect Dis 225: 881ā890.
Keffale M et al., 2019. Serological evidence for a decline in malaria transmission following major scale-up of control efforts in a setting selected for Plasmodium vivax and Plasmodium falciparum malaria elimination in Babile district, Oromia, Ethiopia. Trans R Soc Trop Med Hyg 113: 305ā311.
Assefa A et al., 2019. Multiplex serology demonstrate cumulative prevalence and spatial distribution of malaria in Ethiopia. Malar J 18: 246.
Ashton RA et al., 2015. Geostatistical modeling of malaria endemicity using serological indicators of exposure collected through school surveys. Am J Trop Med Hyg 93: 168ā177.
Hawaria D , Demissew A , Kibret S , Lee M-C , Yewhalaw D , Yan G , 2020. Effects of environmental modification on the diversity and positivity of anopheline mosquito aquatic habitats at Arjo-Dedessa irrigation development site, southwest Ethiopia. Infect Dis Poverty 9: 9.
Demissew A , Hawaria D , Kibret S , Animut A , Tsegaye A , Lee M-C , Yan G , Yewhalaw D , 2020. Impact of sugarcane irrigation on malaria vector Anopheles mosquito fauna, abundance and seasonality in Arjo-Didessa, Ethiopia. Malar J 19: 344.
Ashton RA , Kefyalew T , Tesfaye G , Pullan RL , Yadeta D , Reithinger R , Kolaczinski JH , Brooker S , 2011. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings. Malar J 10: 25.
Alemu K , Worku A , Berhane Y , Kumie A , 2014. Men traveling away from home are more likely to bring malaria into high altitude villages, northwest Ethiopia. PLoS One 9: e95341.
Chan Y , Fornace K , Wu L , Arnold BF , Priest JW , Martin DL , Chang MA , Cook J , Stresman G , Drakeley C , 2021. Determining seropositivity ā a review of approaches to define population seroprevalence when using multiplex bead assays to assess burden of tropical diseases. PLoS Negl Trop Dis 15: e0009457.
Markwalter CF , Nyunt MH , Han ZY , Henao R , Jain A , Taghavian O , Felgner PL , Han KT , Nyunt MM , Plowe CV , 2021. Antibody signatures of asymptomatic Plasmodium falciparum malaria infections measured from dried blood spots. Malar J 20: 378.
Ondigo BN , Hamre KES , Frosch AEP , Ayodo G , White MT , John CC , 2020. Antibody profiles to P. falciparum antigens over time characterize acute and long-term malaria exposure in an area of low and unstable transmission. Am J Trop Med Hyg 103: 2189ā2197.
Arnold BF , Priest JW , Hamlin KL , Moss DM , Colford JM Jr , Lammie PJ , 2014. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods. PLoS One 9: e93684.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 237 | 237 | 45 |
Full Text Views | 251 | 251 | 2 |
PDF Downloads | 255 | 255 | 2 |