• 1.

    Rakotoarinia MR , Guillaume Blanchet F , Gravel D , Lapen DR , Leighton PA , Ogden NH , Ludwig A , 2022. Effects of land use and weather on the presence and abundance of mosquito-borne disease vectors in an urban and agricultural landscape in Eastern Ontario, Canada. PLoS One 17: e0262376.

    • Search Google Scholar
    • Export Citation
  • 2.

    Walz U , 2011. Landscape structure, landscape metrics and biodiversity. Living Rev Landsc Res 5: 135.

  • 3.

    Zittra C , Vitecek S , Obwaller AG , Rossiter H , Eigner B , Zechmeister T , Waringer J , Fuehrer HP , 2017. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasit Vectors 10: 113.

    • Search Google Scholar
    • Export Citation
  • 4.

    Ferraguti M , Martínez-De La Puente J , Roiz D , Ruiz S , Soriguer R , Figuerola J. , 2016. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep 6: 19.

    • Search Google Scholar
    • Export Citation
  • 5.

    de Liu M , Li CX , Feng XY , de Dong Y , Yi MY , Zhao TY , 2022. Spatial relationship among the density of Culex tritaeniorhynchus, Anopheles sinensis, human dwellings and pigsty in Guangxi, China: modelling study. Int J Trop Insect Sci 2022: 18.

    • Search Google Scholar
    • Export Citation
  • 6.

    Yasuoka J , Levins R , 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg 76: 450460.

    • Search Google Scholar
    • Export Citation
  • 7.

    Oliver TH , Isaac NJB , August TA , Woodcock BA , Roy DB , Bullock JM , 2015. Declining resilience of ecosystem functions under biodiversity loss. Nat Commun 6: 10122.

    • Search Google Scholar
    • Export Citation
  • 8.

    Pershin D , Chernykh D , Biryukov R , Zolotov D , 2020. Influence of landscape diversity on temporal variability of ecosystem functioning in the south of western Siberia. Ekol Bratisl 39: 270276.

    • Search Google Scholar
    • Export Citation
  • 9.

    Waldron A , Miller DC , Redding D , Mooers A , Kuhn TS , Nibbelink N , Roberts JT , Tobias JA , Gittleman JL , 2018. Corrigendum: reductions in global biodiversity loss predicted from conservation spending. Nature 553: 530.

    • Search Google Scholar
    • Export Citation
  • 10.

    Hanski I , 2011. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40: 248.

  • 11.

    Cardinale BJ et al., 2012. Biodiversity loss and its impact on humanity. Nature 486: 5967.

  • 12.

    Stefani A , Roux E , Fotsing JM , Carme B , 2011. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations. Int J Health Geogr 10: 65.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kweka EJ , Kimaro EE , Munga S , 2016. Effect of deforestation and land use changes on mosquito productivity and development in western Kenya highlands: implication for malaria risk. Front Public Health 4: 238.

    • Search Google Scholar
    • Export Citation
  • 14.

    Samson DM , Archer RS , Alimi TO , Arheart KL , Impoinvil DE , Oscar R , Fuller DO , Qualls WA , 2015. New baseline environmental assessment of mosquito ecology in northern Haiti during increased urbanization. J Vector Ecol 40: 4658.

    • Search Google Scholar
    • Export Citation
  • 15.

    Vittor AY et al., 2009. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg 81: 512.

    • Search Google Scholar
    • Export Citation
  • 16.

    Vittor AY , Gilman RH , Tielsch J , Glass G , Shields T , Lozano WS , Pinedo-Cancino V , Patz JA , 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74: 311.

    • Search Google Scholar
    • Export Citation
  • 17.

    Gough KV , Yankson PW , Esson J , 2019. Migration, housing and attachment in urban gold mining settlements. Urban Stud 56: 26702687.

  • 18.

    Barros FSM , Honório NA , 2015. Deforestation and malaria on the amazon frontier: larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am J Trop Med Hyg 93: 939953.

    • Search Google Scholar
    • Export Citation
  • 19.

    Chaves LSM , Bergo ES , Conn JE , Laporta GZ , Prist PR , Sallum MAM , 2021. Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS One 16: e0245087.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hernández-Valencia JC , Rincón DS , Marín A , Naranjo-Díaz N , Correa MM , 2020. Effect of land cover and landscape fragmentation on anopheline mosquito abundance and diversity in an important Colombian malaria endemic region. PLoS One 15: 30240207.

    • Search Google Scholar
    • Export Citation
  • 21.

    Coutinho PEG , Candido LA , Tadei WP , da Silva UL Junior , Correa HKM , 2018. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. Environ Monit Assess 190: 311.

    • Search Google Scholar
    • Export Citation
  • 22.

    Patz JA , Graczyk TK , Geller N , Vittor AY , 2000. Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30: 13951405.

    • Search Google Scholar
    • Export Citation
  • 23.

    Castellanos A , Chaparro-Narváez P , Morales-Plaza CD , Alzate A , Padilla J , Arévalo M , Herrera S , 2016. Malaria in gold-mining areas in Colombia. Mem Inst Oswaldo Cruz 111: 5966.

    • Search Google Scholar
    • Export Citation
  • 24.

    Grillet ME et al., 2021. Malaria in southern Venezuela: the hottest hotspot in Latin America. PLoS Negl Trop Dis 15: e0008211.

  • 25.

    Chaves LSM , Conn JE , López RVM , Sallum MAM. , 2018. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep 8: 111.

    • Search Google Scholar
    • Export Citation
  • 26.

    Naranjo-Díaz N , Rosero DA , Rua-Uribe G , Luckhart S , Correa MM , 2013. Abundance, behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. Parasit Vectors 6: 61.

    • Search Google Scholar
    • Export Citation
  • 27.

    Naranjo-Díaz N , Altamiranda M , Luckhart S , Conn JE , Correa MM , 2014. Malaria vectors in ecologically heterogeneous localities of the Colombian pacific region. PLoS One 9: e103769.

    • Search Google Scholar
    • Export Citation
  • 28.

    Naranjo-Díaz N , Altamiranda-Saavedra M , Correa MM , 2019. Anopheles species composition and entomological parameters in malaria endemic localities of North West Colombia. Acta Trop 190: 1321.

    • Search Google Scholar
    • Export Citation
  • 29.

    WHO , 2020. WHO World Malaria Report 2020. Geneva, Switzerland: World Health Organization.

  • 30.

    Instituto Nacional de Salud , 2021. Instituto Nacional de Salud, Boletín epidemiológico Semanal. Estadísticas del sistema de vigilancia en salud pública- SIVIGILA, Casos totales en la Semana Epidemiológica 52 y acumulados del año, Subdirección de Vigilancia y Control en Salud Pública.

  • 31.

    Minambiente, IDEAM , 2018. Estrategia Integral de Control a la Deforestación y Gestión de Los Bosques en Colombia. Ministerio de Ambiente y Desarrollo Sostenible 347.

  • 32.

    Naranjo-Díaz N , Hernandez-Valencia JC , Marín A , Correa MM , 2020. Relationship between land cover and Anophelinae species abundance, composition and diversity in NW Colombia. Infect Genet Evol 78: 104114.

    • Search Google Scholar
    • Export Citation
  • 33.

    Baselga A , Bonthoux S , Balent G , 2015. Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS One 10: e0127913.

    • Search Google Scholar
    • Export Citation
  • 34.

    Orton RW , Tucker DB , Harrison JS , McBrayer LD , 2020. Spatial and temporal patterns of genetic diversity in a fragmented and transient landscape. Evol Ecol 34: 217233.

    • Search Google Scholar
    • Export Citation
  • 35.

    Correa Argota R , 2017. Desarrollo socio-económico regional: Impactos de la minería artesanal en el Bajo Cauca antioqueño. Rev Internacional Cooperación y Desarrollo 4: 46.

    • Search Google Scholar
    • Export Citation
  • 36.

    Defensoria del Pueblo Colombia , 2016. La minería sin control. Bogota, Colombia: Imprenta Nacional de Colombia.

  • 37.

    Pacifico y Territorio O , Regional del Pacifico Colombiano C , 2018. Impactos de la minería en el pacífico colombiano. Editorial Nuevo Milenio.

    • Search Google Scholar
    • Export Citation
  • 38.

    Burkot TR , Russell TL , Reimer LJ , Bugoro H , Beebe NW , Cooper RD , Sukawati S , Collins FH , Lobo NF. , 2013. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 5: 49.

    • Search Google Scholar
    • Export Citation
  • 39.

    Piedrahita S , Álvarez N , Naranjo-Díaz N , Bickersmith S , Conn JE , Correa MM , 2022. Anopheles blood meal sources and entomological indicators related to Plasmodium transmission in malaria endemic areas of Colombia. Acta Trop 233: 106567.

    • Search Google Scholar
    • Export Citation
  • 40.

    Gonzalez R , Carrejo N , 2009. Introducción al estudio taxonómico de Anopheles de Colombia Claves y notas de distribución, 2nd edition. Cali, Colombia: Universidad del Valle.

    • Search Google Scholar
    • Export Citation
  • 41.

    Cienfuegos A , Gómez G , Córdoba L , Luckhart S , Conn J , Correa M , 2008. Diseño y evaluación de metodologías basadas en PCR–RFLP de ITS2 para la identificación molecular de mosquitos Anopheles spp. (Diptera:Culicidae) de la Costa Pacífica de Colombia. Rev Biomed 19: 3544.

    • Search Google Scholar
    • Export Citation
  • 42.

    Cienfuegos AV , Rosero DA , Naranjo N , Luckhart S , Conn JE , Correa MM , 2011. Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia. Acta Trop 118: 128135.

    • Search Google Scholar
    • Export Citation
  • 43.

    Zapata MA , Cienfuegos AV , Quirós OI , Quiñones ML , Luckhart S , Correa MM , 2007. Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of its sequences. Am J Trop Med Hyg 77: 6772.

    • Search Google Scholar
    • Export Citation
  • 44.

    Achee NL , Grieco JP , Andre RG , Rejmankova E , Roberts DR , 2007. A mark-release-recapture study to define the flight behaviors of Anopheles vestitipennis and Anopheles albimanus in Belize, Central America. J Am Mosq Control Assoc 23: 276282.

    • Search Google Scholar
    • Export Citation
  • 45.

    IDEAM , 2010. Leyenda nacional de coberturas de la tierra Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000. Bogotá: Instituto de Hidrología, Metereología y Estudios Ambientales.

    • Search Google Scholar
    • Export Citation
  • 46.

    ESRI , 2014. ArcGIS Desktop Version 10.2. Redlands, CA: Environmental Systems Research Institute.

  • 47.

    Subriós JV , Linde DV , Pascaul AL , Palom AR , 2006. Conceptos y métodos fundamentales en ecología del paisaje (landscape ecology). Una interpretación desde la geografía. Doc Anal Geogr 51: 151166.

    • Search Google Scholar
    • Export Citation
  • 48.

    Lang S , Tiede D , 2003. vLATE Extension für ArcGIS – vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse. ESRI European User Conference 2003 Innsbruck, CDROM, 1–10.

  • 49.

    Sudhakar Reddy C , Ram Mohan Rao K , Pattanaik C , Joshi PK , 2009. Assessment of large-scale deforestation of Nawarangpur district, Orissa, India: a remote sensing based study. Environ Monit Assess 54: 325335.

    • Search Google Scholar
    • Export Citation
  • 50.

    Ter Braak CJF , 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 11671179.

    • Search Google Scholar
    • Export Citation
  • 51.

    Oksanen J et al., 2017. Community Ecology Package. R package Version 2.4–3. Available at: https://CRAN.R-project.org/package=vegan. Accessed January 20, 2023.

  • 52.

    R Core Team , 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: https://www.R-project.org/. Accessed January 31, 2023.

  • 53.

    Baselga A , Orme CDL , 2012. Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3: 808812.

  • 54.

    Rubio-Palis Y , 2000. Anopheles (Nyssorhynchus) de Venezuela: taxonomia, bionomía, ecologia e importáncia médica .Maracay, Venezuela: Escuela de Malariología y Saneamiento Ambiental Dr Arnoldo Gabaldon/Proyecto Control de Enfermedades Endémicas.

    • Search Google Scholar
    • Export Citation
  • 55.

    Brochero H , Pareja P , Ortiz G , Olano V , 2006. Breeding places and biting activity of Anopheles species in the municipality of Cimitarra, Santander, Colombia. Biomédica 26: 269277.

    • Search Google Scholar
    • Export Citation
  • 56.

    Pinault LL , Hunter FF , 2012. Characterization of larval habitats of Anopheles albimanus, Anopheles pseudopunctipennis, Anopheles punctimacula, and Anopheles oswaldoi s.l. populations in lowland and highland Ecuador. J Vector Ecol 37: 124136.

    • Search Google Scholar
    • Export Citation
  • 57.

    Harbach RE , 2008. Mosquito Taxonomic Inventory. Available at: https://mosquito-taxonomic-inventory.myspecies.info/. Accessed January 31, 2023.

  • 58.

    Álvarez N , Gómez GF , Naranjo-Díaz N , Correa MM , 2018. Discrimination of Anopheles species of the Arribalzagia Series in Colombia using a multilocus approach. Infect Genet Evol 64: 7684.

    • Search Google Scholar
    • Export Citation
  • 59.

    Gutiérrez LA , González JJ , Gómez GF , Castro MI , Rosero DA , Luckhart S , Conn JE , Correa MM , 2009. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, Northwestern Colombia. Mem Inst Oswaldo Cruz 104: 11171124.

    • Search Google Scholar
    • Export Citation
  • 60.

    Chaves LF , Hamer GL , Walker ED , Brown WM , Ruiz MO , Kitron UD , 2011. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2: 121.

    • Search Google Scholar
    • Export Citation
  • 61.

    Rejmánková E , Grieco J , Achee NR , Roberts D & Manguin S Anopheles Mosquitoes—New Insights into Malaria Vectors. London: IntechOpen; 2013. Available at: https://www.intechopen.com/chapters/43671. Accessed November 16, 2022.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 982 982 25
Full Text Views 136 136 4
PDF Downloads 123 123 8
 
 
 
 
 
 
 
 
 
 
 

Spatial and Temporal Diversity Variation in the Anopheles Communities in Malaria-Endemic Regions of Colombia

Nelson Naranjo-DíazGrupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Nelson Naranjo-Díaz in
Current site
Google Scholar
PubMed
Close
,
Juan C. Hernández-ValenciaGrupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Juan C. Hernández-Valencia in
Current site
Google Scholar
PubMed
Close
,
Giovan F. GómezGrupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia;
Universidad Nacional de Colombia—Sede de La Paz, La Paz, Colombia

Search for other papers by Giovan F. Gómez in
Current site
Google Scholar
PubMed
Close
, and
Margarita M. CorreaGrupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia;

Search for other papers by Margarita M. Correa in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

ABSTRACT.

This study aimed to evaluate at a temporospatial scale, the influence of anthropogenic land cover changes in the Anopheles species community composition and diversity in two Colombian malaria-endemic regions, Bajo Cauca and Pacific. To determine variations over time, mosquitoes were collected in two time periods; land cover types were characterized on orthorectified aerial photographs, and landscape metrics were estimated for each locality and period. A temporal dissimilarity analysis to evaluated species replacement and the nestedness species loss/gain showed the influence of the species loss or gain component on Anopheles species assemblage (23%). The relationship between land cover variation and Anopheles beta diversity, evaluated by regression analysis, showed the effect of forest variation in the Anopheles community (βsim and forest r2 = 0.9323; βsne and forest r2 = 0.9425). Furthermore, a canonical correspondence analysis showed that the land cover types associated with Anopheles species presence were bare soil, shrub, wet areas, and forest. Results demonstrated the impact of land cover changes attributed to human activities on Anopheles population dynamics, over time; this was evidenced as species loss or gain, which was specific to each locality. Notably, the main malaria vectors were dominant in most localities over time, suggesting their tolerance to anthropogenic transformations; alternatively, the environmental changes are providing adequate ecological conditions for their persistence. Finally, the data generated are relevant for understanding the impact that environmental change may have on the dynamics of the neotropical malaria vectors. Thus, this research has potential implications for vector control interventions.

Author Notes

Address correspondence to Margarita M. Correa, Lab 5-430, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia. E-mail: margarita.correao@udea.edu.co

Financial support: This work was funded by the Departmento Administrativo de Ciencias, Tecnología e Inovación de Colombia–Colciencias (now Minciencias) project code no. 753-2018 and University of Antioquia; also received support from Escuela de Microbiología, University of Antioquia project code no. 2021-41851.

Authors’ addresses: Nelson Naranjo-Díaz, Juan C. Hernández-Valencia, and Margarita M. Correa, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia, E-mails: nelson.naranjo@udea.edu.co, juan.hernandez21@udea.edu.co, and margarita.correao@udea.edu.co. Giovan F. Gómez, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia, and Universidad Nacional de Colombia—Sede de La Paz, La Paz, Colombia, E-mail: gfgomezg@unal.edu.co.

Save