Rakotoarinia MR , Guillaume Blanchet F , Gravel D , Lapen DR , Leighton PA , Ogden NH , Ludwig A , 2022. Effects of land use and weather on the presence and abundance of mosquito-borne disease vectors in an urban and agricultural landscape in Eastern Ontario, Canada. PLoS One 17: e0262376.
Walz U , 2011. Landscape structure, landscape metrics and biodiversity. Living Rev Landsc Res 5: 1–35.
Zittra C , Vitecek S , Obwaller AG , Rossiter H , Eigner B , Zechmeister T , Waringer J , Fuehrer HP , 2017. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae). Parasit Vectors 10: 1–13.
Ferraguti M , Martínez-De La Puente J , Roiz D , Ruiz S , Soriguer R , Figuerola J. , 2016. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep 6: 1–9.
de Liu M , Li CX , Feng XY , de Dong Y , Yi MY , Zhao TY , 2022. Spatial relationship among the density of Culex tritaeniorhynchus, Anopheles sinensis, human dwellings and pigsty in Guangxi, China: modelling study. Int J Trop Insect Sci 2022: 1–8.
Yasuoka J , Levins R , 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg 76: 450–460.
Oliver TH , Isaac NJB , August TA , Woodcock BA , Roy DB , Bullock JM , 2015. Declining resilience of ecosystem functions under biodiversity loss. Nat Commun 6: 10122.
Pershin D , Chernykh D , Biryukov R , Zolotov D , 2020. Influence of landscape diversity on temporal variability of ecosystem functioning in the south of western Siberia. Ekol Bratisl 39: 270–276.
Waldron A , Miller DC , Redding D , Mooers A , Kuhn TS , Nibbelink N , Roberts JT , Tobias JA , Gittleman JL , 2018. Corrigendum: reductions in global biodiversity loss predicted from conservation spending. Nature 553: 530.
Hanski I , 2011. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40: 248.
Cardinale BJ et al., 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.
Stefani A , Roux E , Fotsing JM , Carme B , 2011. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations. Int J Health Geogr 10: 65.
Kweka EJ , Kimaro EE , Munga S , 2016. Effect of deforestation and land use changes on mosquito productivity and development in western Kenya highlands: implication for malaria risk. Front Public Health 4: 238.
Samson DM , Archer RS , Alimi TO , Arheart KL , Impoinvil DE , Oscar R , Fuller DO , Qualls WA , 2015. New baseline environmental assessment of mosquito ecology in northern Haiti during increased urbanization. J Vector Ecol 40: 46–58.
Vittor AY et al., 2009. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg 81: 5–12.
Vittor AY , Gilman RH , Tielsch J , Glass G , Shields T , Lozano WS , Pinedo-Cancino V , Patz JA , 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74: 3–11.
Gough KV , Yankson PW , Esson J , 2019. Migration, housing and attachment in urban gold mining settlements. Urban Stud 56: 2670–2687.
Barros FSM , Honório NA , 2015. Deforestation and malaria on the amazon frontier: larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am J Trop Med Hyg 93: 939–953.
Chaves LSM , Bergo ES , Conn JE , Laporta GZ , Prist PR , Sallum MAM , 2021. Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLoS One 16: e0245087.
Hernández-Valencia JC , Rincón DS , Marín A , Naranjo-Díaz N , Correa MM , 2020. Effect of land cover and landscape fragmentation on anopheline mosquito abundance and diversity in an important Colombian malaria endemic region. PLoS One 15: 30240207.
Coutinho PEG , Candido LA , Tadei WP , da Silva UL Junior , Correa HKM , 2018. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. Environ Monit Assess 190: 311.
Patz JA , Graczyk TK , Geller N , Vittor AY , 2000. Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30: 1395–1405.
Castellanos A , Chaparro-Narváez P , Morales-Plaza CD , Alzate A , Padilla J , Arévalo M , Herrera S , 2016. Malaria in gold-mining areas in Colombia. Mem Inst Oswaldo Cruz 111: 59–66.
Grillet ME et al., 2021. Malaria in southern Venezuela: the hottest hotspot in Latin America. PLoS Negl Trop Dis 15: e0008211.
Chaves LSM , Conn JE , López RVM , Sallum MAM. , 2018. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep 8: 1–11.
Naranjo-Díaz N , Rosero DA , Rua-Uribe G , Luckhart S , Correa MM , 2013. Abundance, behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. Parasit Vectors 6: 61.
Naranjo-Díaz N , Altamiranda M , Luckhart S , Conn JE , Correa MM , 2014. Malaria vectors in ecologically heterogeneous localities of the Colombian pacific region. PLoS One 9: e103769.
Naranjo-Díaz N , Altamiranda-Saavedra M , Correa MM , 2019. Anopheles species composition and entomological parameters in malaria endemic localities of North West Colombia. Acta Trop 190: 13–21.
WHO , 2020. WHO World Malaria Report 2020. Geneva, Switzerland: World Health Organization.
Instituto Nacional de Salud , 2021. Instituto Nacional de Salud, Boletín epidemiológico Semanal. Estadísticas del sistema de vigilancia en salud pública- SIVIGILA, Casos totales en la Semana Epidemiológica 52 y acumulados del año, Subdirección de Vigilancia y Control en Salud Pública.
Minambiente, IDEAM , 2018. Estrategia Integral de Control a la Deforestación y Gestión de Los Bosques en Colombia. Ministerio de Ambiente y Desarrollo Sostenible 347.
Naranjo-Díaz N , Hernandez-Valencia JC , Marín A , Correa MM , 2020. Relationship between land cover and Anophelinae species abundance, composition and diversity in NW Colombia. Infect Genet Evol 78: 104114.
Baselga A , Bonthoux S , Balent G , 2015. Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS One 10: e0127913.
Orton RW , Tucker DB , Harrison JS , McBrayer LD , 2020. Spatial and temporal patterns of genetic diversity in a fragmented and transient landscape. Evol Ecol 34: 217–233.
Correa Argota R , 2017. Desarrollo socio-económico regional: Impactos de la minería artesanal en el Bajo Cauca antioqueño. Rev Internacional Cooperación y Desarrollo 4: 46.
Defensoria del Pueblo Colombia , 2016. La minería sin control. Bogota, Colombia: Imprenta Nacional de Colombia.
Pacifico y Territorio O , Regional del Pacifico Colombiano C , 2018. Impactos de la minería en el pacífico colombiano. Editorial Nuevo Milenio.
Burkot TR , Russell TL , Reimer LJ , Bugoro H , Beebe NW , Cooper RD , Sukawati S , Collins FH , Lobo NF. , 2013. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 5: 49.
Piedrahita S , Álvarez N , Naranjo-Díaz N , Bickersmith S , Conn JE , Correa MM , 2022. Anopheles blood meal sources and entomological indicators related to Plasmodium transmission in malaria endemic areas of Colombia. Acta Trop 233: 106567.
Gonzalez R , Carrejo N , 2009. Introducción al estudio taxonómico de Anopheles de Colombia Claves y notas de distribución, 2nd edition. Cali, Colombia: Universidad del Valle.
Cienfuegos A , Gómez G , Córdoba L , Luckhart S , Conn J , Correa M , 2008. Diseño y evaluación de metodologías basadas en PCR–RFLP de ITS2 para la identificación molecular de mosquitos Anopheles spp. (Diptera:Culicidae) de la Costa Pacífica de Colombia. Rev Biomed 19: 35–44.
Cienfuegos AV , Rosero DA , Naranjo N , Luckhart S , Conn JE , Correa MM , 2011. Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia. Acta Trop 118: 128–135.
Zapata MA , Cienfuegos AV , Quirós OI , Quiñones ML , Luckhart S , Correa MM , 2007. Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of its sequences. Am J Trop Med Hyg 77: 67–72.
Achee NL , Grieco JP , Andre RG , Rejmankova E , Roberts DR , 2007. A mark-release-recapture study to define the flight behaviors of Anopheles vestitipennis and Anopheles albimanus in Belize, Central America. J Am Mosq Control Assoc 23: 276–282.
IDEAM , 2010. Leyenda nacional de coberturas de la tierra Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000. Bogotá: Instituto de Hidrología, Metereología y Estudios Ambientales.
ESRI , 2014. ArcGIS Desktop Version 10.2. Redlands, CA: Environmental Systems Research Institute.
Subriós JV , Linde DV , Pascaul AL , Palom AR , 2006. Conceptos y métodos fundamentales en ecología del paisaje (landscape ecology). Una interpretación desde la geografía. Doc Anal Geogr 51: 151–166.
Lang S , Tiede D , 2003. vLATE Extension für ArcGIS – vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse. ESRI European User Conference 2003 Innsbruck, CDROM, 1–10.
Sudhakar Reddy C , Ram Mohan Rao K , Pattanaik C , Joshi PK , 2009. Assessment of large-scale deforestation of Nawarangpur district, Orissa, India: a remote sensing based study. Environ Monit Assess 54: 325–335.
Ter Braak CJF , 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.
Oksanen J et al., 2017. Community Ecology Package. R package Version 2.4–3. Available at: https://CRAN.R-project.org/package=vegan. Accessed January 20, 2023.
R Core Team , 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: https://www.R-project.org/. Accessed January 31, 2023.
Baselga A , Orme CDL , 2012. Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3: 808–812.
Rubio-Palis Y , 2000. Anopheles (Nyssorhynchus) de Venezuela: taxonomia, bionomía, ecologia e importáncia médica .Maracay, Venezuela: Escuela de Malariología y Saneamiento Ambiental Dr Arnoldo Gabaldon/Proyecto Control de Enfermedades Endémicas.
Brochero H , Pareja P , Ortiz G , Olano V , 2006. Breeding places and biting activity of Anopheles species in the municipality of Cimitarra, Santander, Colombia. Biomédica 26: 269–277.
Pinault LL , Hunter FF , 2012. Characterization of larval habitats of Anopheles albimanus, Anopheles pseudopunctipennis, Anopheles punctimacula, and Anopheles oswaldoi s.l. populations in lowland and highland Ecuador. J Vector Ecol 37: 124–136.
Harbach RE , 2008. Mosquito Taxonomic Inventory. Available at: https://mosquito-taxonomic-inventory.myspecies.info/. Accessed January 31, 2023.
Álvarez N , Gómez GF , Naranjo-Díaz N , Correa MM , 2018. Discrimination of Anopheles species of the Arribalzagia Series in Colombia using a multilocus approach. Infect Genet Evol 64: 76–84.
Gutiérrez LA , González JJ , Gómez GF , Castro MI , Rosero DA , Luckhart S , Conn JE , Correa MM , 2009. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, Northwestern Colombia. Mem Inst Oswaldo Cruz 104: 1117–1124.
Chaves LF , Hamer GL , Walker ED , Brown WM , Ruiz MO , Kitron UD , 2011. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2: 1–21.
Rejmánková E , Grieco J , Achee NR , Roberts D & Manguin S Anopheles Mosquitoes—New Insights into Malaria Vectors. London: IntechOpen; 2013. Available at: https://www.intechopen.com/chapters/43671. Accessed November 16, 2022.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 970 | 970 | 13 |
Full Text Views | 136 | 136 | 18 |
PDF Downloads | 123 | 123 | 16 |
This study aimed to evaluate at a temporospatial scale, the influence of anthropogenic land cover changes in the Anopheles species community composition and diversity in two Colombian malaria-endemic regions, Bajo Cauca and Pacific. To determine variations over time, mosquitoes were collected in two time periods; land cover types were characterized on orthorectified aerial photographs, and landscape metrics were estimated for each locality and period. A temporal dissimilarity analysis to evaluated species replacement and the nestedness species loss/gain showed the influence of the species loss or gain component on Anopheles species assemblage (23%). The relationship between land cover variation and Anopheles beta diversity, evaluated by regression analysis, showed the effect of forest variation in the Anopheles community (βsim and forest r2 = 0.9323; βsne and forest r2 = 0.9425). Furthermore, a canonical correspondence analysis showed that the land cover types associated with Anopheles species presence were bare soil, shrub, wet areas, and forest. Results demonstrated the impact of land cover changes attributed to human activities on Anopheles population dynamics, over time; this was evidenced as species loss or gain, which was specific to each locality. Notably, the main malaria vectors were dominant in most localities over time, suggesting their tolerance to anthropogenic transformations; alternatively, the environmental changes are providing adequate ecological conditions for their persistence. Finally, the data generated are relevant for understanding the impact that environmental change may have on the dynamics of the neotropical malaria vectors. Thus, this research has potential implications for vector control interventions.
Financial support: This work was funded by the Departmento Administrativo de Ciencias, Tecnología e Inovación de Colombia–Colciencias (now Minciencias) project code no. 753-2018 and University of Antioquia; also received support from Escuela de Microbiología, University of Antioquia project code no. 2021-41851.
Authors’ addresses: Nelson Naranjo-Díaz, Juan C. Hernández-Valencia, and Margarita M. Correa, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia, E-mails: nelson.naranjo@udea.edu.co, juan.hernandez21@udea.edu.co, and margarita.correao@udea.edu.co. Giovan F. Gómez, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia, and Universidad Nacional de Colombia—Sede de La Paz, La Paz, Colombia, E-mail: gfgomezg@unal.edu.co.