• 1.

    World Health Organization , 2020. World Malaria Report 2020: 20 Years of Global Progress and Challenges. Geneva, Switzerland: WHO. Available at: https://www.who.int/publications/i/item/9789240015791. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 2.

    Lekweiry KM, Salem MSOA, Basco LK, Briolant S, Hafid J, Boukhary AOMS, 2015. Malaria in Mauritania: retrospective and prospective overview. Malar J 14: 100.

  • 3.

    Ould Ahmedou Salem MS, Mint Lekweiry K, Mint Deida J, Ould Emouh A, Ould Weddady M, Ould Mohamed Salem Boukhary A, Basco LK, 2015. Increasing prevalence of Plasmodium vivax among febrile patients in Nouakchott, Mauritania. Am J Trop Med Hyg 92: 537540.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mint Deida J, Ould Khalef Y, Mint Semane E, Ould Ahmedou Salem MS, Bogreau H, Basco L, Ould Mohamed Salem Boukhary A, Tahar R, 2018. Assessment of drug resistance associated genetic diversity in Mauritanian isolates of Plasmodium vivax reveals limited polymorphism. Malar J 17: 416.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Deida J, Tahar R, Khalef YO, Lekweiry KM, Hmeyade A, Khairy MLO, Simard F, Bogreau H, Basco L, Boukhary AOMS, 2019. Oasis malaria, northern Mauritania. Emerg Infect Dis 25: 273280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Diallo SM, Bogreau H, Papa Mze N, Ould Ahmedou Salem MS, Ould Khairy ML, Parola P, Basco L, Ould Mohamed Salem Boukhary A, 2020. Malaria epidemiology in Kobeni department, southeastern Mauritania from 2015 to 2017. Infect Dis Poverty 9: 21.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ould Ahmedou Salem MS, Basco LK, Ouldabdallahi M, Mint Lekweiry K, Konaté L, Faye O, Ould Mohamed Salem Boukhary A, 2015. Malaria-associated morbidity during the rainy season in Saharan and Sahelian zones in Mauritania. Acta Trop 152: 17.

    • Search Google Scholar
    • Export Citation
  • 8.

    Ba H, Duffy CW, Ahouidi AD, Deh YB, Diallo MY, Tandia A, Conway DJ, 2016. Widespread distribution of Plasmodium vivax malaria in Mauritania on the interface of the Maghreb and West Africa. Malar J 15: 80.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ba H et al., 2020. Multi-locus genotyping reveals established endemicity of a geographically distinct Plasmodium vivax population in Mauritania, West Africa. PLoS Negl Trop Dis 14: e0008945.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    World Health Organization Regional Office for the Eastern Mediterranean and Moroccan Ministry of Health , 2007. Malaria in Morocco: Relentless Efforts Towards the Goal of Elimination. Available at: https://apps.who.int/iris/handle/10665/116532. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 11.

    World Health Organization , 2010. Morocco certified malaria-free. Wkly Epidemiol Rec 85: 235236.

  • 12.

    World Health Organization , 2019. The E-2020 Initiative of 21 Malaria-Eliminating Countries: 2019 Progress Report. Available at: https://apps.who.int/iris/handle/10665/325304?locale-attribute=fr&. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 13.

    World Health Organization , 2018. World Malaria Report 2018: Country Profiles. Available at: https://www.who.int/publications/i/item/9789241565653. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 14.

    Bernabeu M et al., 2012. Plasmodium vivax malaria in Mali: a study from three different regions. Malar J 11: 405.

  • 15.

    Koita OA et al., 2012. Effect of seasonality and ecological factors on the prevalence of the four malaria parasite species in northern Mali. J Trop Med 2012: 367160. doi:10.1155/2012/367160.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Niang M et al., 2015. A molecular survey of acute febrile illnesses reveals Plasmodium vivax infections in Kedougou, southeastern Senegal. Malar J 14: 281.

  • 17.

    Williams J et al., 2016. Non-falciparum malaria infections in pregnant women in West Africa. Malar J 15: 53.

  • 18.

    Niang M, Diop F, Niang O, Sadio BD, Sow A, Faye O, Diallo M, Sall AA, Perraut R, Toure-Balde A, 2017. Unexpected high circulation of Plasmodium vivax in asymptomatic children from Kédougou, southeastern Senegal. Malar J 16: 497.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Niangaly A et al., 2017. Plasmodium vivax infections over 3 years in Duffy blood group negative Malians in Bandiagara, Mali. Am J Trop Med Hyg 97: 744752.

  • 20.

    Ould Ahmedou Salem MS et al., 2015. Efficacy of chloroquine for the treatment of Plasmodium vivax in the Saharan zone in Mauritania. Malar J 14: 39.

    • Search Google Scholar
    • Export Citation
  • 21.

    Recht J, Ashley E, White N, 2014. Safety of 8-Aminoquinoline Antimalarial Medicines. Available at: https://apps.who.int/iris/handle/10665/112735. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 22.

    World Health Organization , 2015. Guidelines for the Treatment of Malaria, 3rd Ed. Available at: https://apps.who.int/iris/handle/10665/162441. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 23.

    Baird JK, 2019. 8-Aminoquinoline therapy for latent malaria. Clin Microbiol Rev 32: e00011e00019.

  • 24.

    Hounkpatin AB, Kreidenweiss A, Held J, 2019. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: a review on the mode of action and emerging trial data. Infect Drug Resist 12: 553570.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mauritanian Ministry of Health , 2013. Guide Clinique et Thérapeutique à l’Usage du Personnel des Centres de Santé de la Mauritanie. Available at: http://www.sante.gov.mr/?wpfb_dl=140. Accessed March 22, 2022.

    • PubMed
    • Export Citation
  • 26.

    Ashley EA, Recht J, White NJ, 2014. Primaquine: the risks and the benefits. Malar J 13: 418.

  • 27.

    Briolant S, Pradines B, Basco LK, 2017. Role of primaquine in malaria control and elimination in French-speaking Africa. Bull Soc Pathol Exot 110: 198206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    World Health Organization , 2016. Testing for G6PD Deficiency for Safe Use of Primaquine in Radical Cure of P. vivax and P. ovale Malaria: Policy Brief. Available at: https://apps.who.int/iris/handle/10665/250297?locale-attribute=fr&. Accessed March 22, 2022.

  • 29.

    Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, Price RN, 2017. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J 16: 361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Grobusch MP, Rodríguez-Morales AJ, Schlagenhauf P, 2019. The primaquine problem: and the solution? Point-of-care diagnostics for glucose 6-phosphate dehydrogenase deficiency. Clin Infect Dis 69: 14431445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pfeffer DA et al., 2020. Quantification of glucose-6-phosphate dehydrogenase activity by spectrophotometry: a systematic review and meta-analysis. PLoS Med 17: e1003084.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Vulliamy TJ, D’Urso M, Battistuzzi G, Estrada M, Foulkes NS, Martini G, Calabro V, Poggi V, Giordano R, Town M, 1988. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci USA 85: 51715175.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E, 2009. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis 42: 267278.

    • Search Google Scholar
    • Export Citation
  • 34.

    Gómez-Manzo S et al., 2014. The stability of G6PD is affected by mutations with different clinical phenotypes. Int J Mol Sci 15: 2117921201.

  • 35.

    Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E, 2012. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cells Mol Dis 48: 154165.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gómez-Manzo S et al., 2016. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci 17: E2069. doi:10.3390/ijms17122069.

    • Search Google Scholar
    • Export Citation
  • 37.

    Goo Y-K, Ji S-Y, Shin H-I, Moon J-H, Cho S-H, Lee W-J, Kim J-Y, 2014. First evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in vivax malaria endemic regions in the Republic of Korea. PLoS One 9: e97390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zúñiga , Mejía RE, Sánchez AL, Sosa-Ochoa WH, Fontecha GA, 2015. Glucose-6-phosphate dehydrogenase deficiency among malaria patients of Honduras: a descriptive study of archival blood samples. Malar J 14: 308.

    • Search Google Scholar
    • Export Citation
  • 39.

    Lee J et al., 2018. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among malaria patients in Upper Myanmar. BMC Infect Dis 18: 131.

  • 40.

    Djigo OKM, Bollahi MA, Hasni Ebou M, Ould Ahmedou Salem MS, Tahar R, Bogreau H, Basco L, Ould Mohamed Salem Boukhary A, 2019. Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania. PLoS One 14: e0220977.

    • Search Google Scholar
    • Export Citation
  • 41.

    Lee W, Lee S-E, Lee MJ, Noh KT, 2020. Investigation of glucose-6-phosphate dehydrogenase (G6PD) deficiency prevalence in a Plasmodium vivax-endemic area in the Republic of Korea (ROK). Malar J 19: 317.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Djigo OKM, Ould Ahmedou Salem MS, Diallo SM, Bollahi MA, Boushab BM, Garre A, Papa Mze N, Basco L, Briolant S, Ould Mohamed Salem Boukhary A, 2021. Molecular epidemiology of G6PD genotypes in different ethnic groups residing in Saharan and Sahelian zones of Mauritania. Pathogens 10: 931.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Carter N, Pamba A, Duparc S, Waitumbi JN, 2011. Frequency of glucose-6-phosphate dehydrogenase deficiency in malaria patients from six African countries enrolled in two randomized anti-malarial clinical trials. Malar J 10: 241.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ezz El-Deen Z, Hussin N, Abdel Hamid T, Abdel Migeed O, Samy R, 2013. G6PD deficiency and G6PD (Mediterranean and silent) polymorphisms in Egyptian infants with neonatal hyperbilirubinemia. Lab Med 44: 228234.

    • Search Google Scholar
    • Export Citation
  • 45.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K, 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35 15471549.

  • 46.

    Cohen J, 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas 20: 3746.

  • 47.

    Landis JR, Koch GG, 1977. The measurement of observer agreement for categorical data. Biometrics 33: 159174.

  • 48.

    Dolo A et al., 2014. Frequency of glucose-6-phosphate dehydrogenase deficiency (A376/202) in three Malian ethnic groups. Bull Soc Pathol Exot 107: 165170.

    • Search Google Scholar
    • Export Citation
  • 49.

    De Araujo C, Migot-Nabias F, Guitard J, Pelleau S, Vulliamy T, Ducrocq R, 2006. The role of the G6PD AEth376G/968C allele in glucose-6-phosphate dehydrogenase deficiency in the seerer population of Senegal. Haematologica 91: 262263.

    • Search Google Scholar
    • Export Citation
  • 50.

    Nafa K, Reghis A, Osmani N, Baghli L, Aït-Abbes H, Benabadji M, Kaplan JC, Vulliamy T, Luzzatto L, 1994. At least five polymorphic mutants account for the prevalence of glucose-6-phosphate dehydrogenase deficiency in Algeria. Hum Genet 94: 513517.

    • Search Google Scholar
    • Export Citation
  • 51.

    Benabadji M, Merad F, Benmoussa M, Trabuchet G, Junien C, Dreyfus JC, Kaplan JC, 1978. Heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Algeria: study in northern Algeria with description of five new variants. Hum Genet 40: 177184.

    • Search Google Scholar
    • Export Citation
  • 52.

    Saoud M, Benkirane S, Bennis F, Mechal Y, Mamad H, Dahmani F, Berchane Z, Woumki A, Masrar A, 2019. Déficit en glucose-6-phosphate déshydrogénase: à propos de 54 cas. Hématologie 25: 16.

    • Search Google Scholar
    • Export Citation
  • 53.

    Djigo OKM, Ould Khalef Y, Ould Ahmedou Salem MS, Gomez N, Basco L, Briolant S, Ould Mohamed Salem Boukhary A, 2021. Assessment of CareStart G6PD rapid diagnostic test and CareStart G6PD biosensor in Mauritania. Infect Dis Poverty 10: 105.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 980 980 52
Full Text Views 60 60 6
PDF Downloads 72 72 6
 
 
 
 
 
 
 
 
 
 
 

Performance of a Commercial Multiplex Allele-Specific Polymerase Chain Reaction Kit to Genotype African-Type Glucose-6-Phosphate Dehydrogenase Deficiency

Oum Kelthoum Mamadou DjigoUnité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania;

Search for other papers by Oum Kelthoum Mamadou Djigo in
Current site
Google Scholar
PubMed
Close
,
Nicolas GomezAix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France;
Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France;
Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France

Search for other papers by Nicolas Gomez in
Current site
Google Scholar
PubMed
Close
,
Mohamed Salem Ould Ahmedou SalemUnité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania;

Search for other papers by Mohamed Salem Ould Ahmedou Salem in
Current site
Google Scholar
PubMed
Close
,
Leonardo BascoAix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France;
Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France;

Search for other papers by Leonardo Basco in
Current site
Google Scholar
PubMed
Close
,
Ali Ould Mohamed Salem BoukharyUnité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania;

Search for other papers by Ali Ould Mohamed Salem Boukhary in
Current site
Google Scholar
PubMed
Close
, and
Sébastien BriolantAix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France;
Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France;
Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France

Search for other papers by Sébastien Briolant in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

ABSTRACT.

8-Aminoquinoline antimalarial drugs (primaquine, tafenoquine) are required for complete cure of Plasmodium vivax malaria, but they are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the absence of spectrophotometry, which is a gold standard for measuring G6PD activity, G6PD genotyping is one of the alternatives to establish a database and distribution map of G6PD enzyme deficiency in Mauritania, which has become a new epicenter of P. vivax malaria in West Africa. The aim of our study was to assess the performance of multiplex allele-specific polymerase chain reaction (PCR) (African-type Diaplex C™ G6PD kit) against PCR–restriction fragment length polymorphism and sequencing. Of 146 mutations associated with G6PD A genotypes in 177 blood samples from Mauritanian patients, all but two samples were identified correctly using multiplex allele-specific PCR (100% sensitivity and 99% specificity; “almost perfect agreement” between allele-specific PCR and PCR-restriction fragment length polymorphism/sequencing, with a kappa coefficient of 0.977). Despite a suboptimal PCR protocol for dried blood spots and the inability of the commercial assay to predict unequivocally the G6PD enzyme level in heterozygous females, the African-type Diaplex C™ G6PD genotyping kit seemed to be a valuable screening tool for male subjects and for research purposes in resource-limited countries where spectrophotometer and DNA sequencing are not available.

Author Notes

Address correspondence to Leonardo Basco, Aile Recherche, Bureau 206, UPE-IRBA-SSA, IHU–Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France. E-mail: lkbasco@yahoo.fr

Financial support: This research was funded by Institut de Recherche pour le Développement (IRD) (grant Jeune Equipe Associée à l’IRD) and the Direction Générale de l’Armement (grant no. PDH-2-NRBC-2-B-2113). O. K. M. D. received a PhD grant from the French government.

Disclosure: The funding sources of this study had no role in study and protocol design, data collection, analysis, or data interpretation.

Disclaimer: The opinions and views expressed in this publication are those of the authors and do not necessarily reflect the official policy, views, or position of the Direction Générale de l’Armement, French Army Institute of Biomedical Research, French Service de Santé des Armées, Aix-Marseille University. The testing of the commercial products mentioned in this publication does not imply endorsement by the French government institutions or semi-private institutions.

Authors’ addresses: Oum Kelthoum Mamadou Djigo, Mohamed Salem Ould Ahmedou Salem, and Ali Ould Mohamed Salem Boukhary, Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania, E-mails: mari1702@live.fr, salem0606@yahoo.fr, and alimedsalem@gmail.com. Nicolas Gomez and Sébastien Briolant, Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France, Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France, and Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France, E-mails: nico13dna@hotmail.com and sbriolant@wanadoo.fr. Leonardo Basco, Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France, and Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France, E-mail: lkbasco@yahoo.fr.

Save